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Properties of quantum droplets at finite temperature

We investigate a one-dimensional, strongly-interacting Bose system with an additional

non-local dipolar term. Such a system offers a new form of ultra dilute state of matter –

quantum droplet. This new quantum state may arise when in an ultracold system, one has

two types of interactions with different nature – attractive and repulsive. There may occur

a situation when the mean-field terms describing the competing forces are close to zero,

and the significant role plays quantum corrections. The formation of a quantum droplet is

possible in both, Bose-Bose mixtures, as predicted by D. Petrov, and in one-component

BEC systems, as discovered by T. Pfau’s group.

In the thesis, we study quantum droplet properties using the so-called Lieb-Liniger

Gross-Pitaevskii equation (LLGPE), which allows studying a strongly-interacting one-di-

mensional Bose system without invoking quantum corrections. That is possible due

to the exact solution given by E. Lieb. We build the LLGPE using the hydrodynamical

approach and the Lieb-Liniger chemical potential. We additionally add the non-local

dipolar interaction to the LLGPE, which enables droplet formation.

In this master’s thesis, we study stationary solutions to the LLGPE. We conclude that

introducing different additional energies to the quantum droplet ground state results in

losing particles and droplet shrinking during real-time evolution. Taking into account

our observations, we build a simple, phenomenological model of a quantum droplet and

investigate its evaporation under temperature. We conclude that the quantum droplet

evaporates slower with the increase of the dipolar coupling constant gdd.

Keywords: quantum droplets, bosons, ultracold atoms, 1D
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Własności kropel kwantowych w niezerowej temperaturze

W pracy badany jest jednowymiarowy, silnie oddziałujący gaz bozonów z dodatkowym

nielokalnym członem dipolowym. W układach takich mogą powstawać zupełnie nowe

formy ultra rozrzedzonej materii – krople kwantowe. Formowanie się kropli kwantowych

jest możliwe w ultra zimnnych układach bozonów, w których występują dwa typy oddziały-

wań o różnej naturze – przyciągającej i odpychającej. Przeciwne oddziaływania powodują,

że w średnio-polowym opisie kondensatu Bosego-Einsteina, może dojść do sytuacji kiedy

człon średnio-polowy będzie bliski zeru a znaczącą rolę zaczną odgrywać zwykle pomijane

poprawki kwantowe. Opisana sytuacja jest możliwa zarówno w mieszaninach bozonów,

co zostało przewidziane przez D. Petrov’a, jak i w jednoskładnikowych układach bozonów,

co zaobserwowała grupa prowadzona przez T. Pfau.

W pracy zanalizowano własności kropel kwantowych używając równania Lieba-Linige-

ra Grossa-Pitajewskiego (LLGPE), które opisuje jednowymiarowy układ Bosego bez konie-

czności wprowadzania poprawek kwantowych. Równanie opiera się na ścisłym rozwiąza-

niu podanym przez E. Lieb’a. Wykorzystując potencjał chemiczny Lieba-Linigera oraz

podejście hydrodynamiczne, wyprowadzono LLGPE oraz dodano do niego dodatkowy

nielokalny człon oddziaływania dipolowego. Człon ten umożliwia tworzenie się kropli.

W pracy magisterskiej badano rozwiązania stacjonarne LLGPE. Wprowadzanie do-

datkowej energii do stanu podstawowego kropel kwantowych powoduje, że podczas

ewolucji w czasie rzeczywistym z kropli wypadają cząstki a ona sama ulega skurczeniu.

Biorąc pod uwagę obserwacje, zaproponowano prosty fenomenologiczny model kropli

kwantowej i zanalizowano jej parowanie pod wpływem temperatury. Modelowana kropla

kwantowa paruje wolniej dla większych stałych sprzężenia oddziaływania dipolowego gdd.

Słowa kluczowe: krople kwantowe, bozony, ultrazimne atomy, 1D
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Świadomy/-a odpowiedzialności karnej za składanie fałszywych zeznań oświadczam, 

że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie, pod opieką 

kierującego pracą dyplomową. 

Jednocześnie oświadczam, że: 

− niniejsza praca dyplomowa nie narusza praw autorskich w rozumieniu ustawy z dnia 

4 lutego 1994 roku o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. Nr 90, 

poz. 631 z późn. zm.) oraz dóbr osobistych chronionych prawem cywilnym, 

− niniejsza praca dyplomowa nie zawiera danych i informacji, które uzyskałem/-am 

w sposób niedozwolony, 

− niniejsza praca dyplomowa nie była wcześniej podstawą żadnej innej urzędowej 

procedury związanej z nadawaniem dyplomów lub tytułów zawodowych, 

− wszystkie informacje umieszczone w niniejszej pracy, uzyskane ze źródeł pisanych 

i elektronicznych, zostały udokumentowane w wykazie literatury odpowiednimi 

odnośnikami, 

− znam regulacje prawne Politechniki Warszawskiej w sprawie zarządzania prawami 

autorskimi i prawami pokrewnymi, prawami własności przemysłowej oraz zasadami 

komercjalizacji. 

 
 

Oświadczam, że treść pracy dyplomowej w wersji drukowanej, treść pracy dyplomowej 

zawartej na nośniku elektronicznym (płycie kompaktowej) oraz treść pracy dyplomowej 

w module APD systemu USOS są identyczne. 

 

 

 

 

............................................... 
czytelny podpis studenta 
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1. Introduction

1.1. Bose-Einstein condensate

Cooling the gas composed of bosons confined in a harmonic trap causes more particles

to occupy lower states of the trap. Decreasing a temperature further toward the absolute

zero leads to a quantum state, where almost all particles are located in the ground state.

This phenomenon is known as the Bose-Einstein condensation (BEC) and was predicted

nearly 100 years ago by A. Einstein.

It might seem that under such cold conditions, there should be a phase transition to the

solid state due to three-body collisions. These collisions cause the formation of molecules

and crystallisation of the system. Nevertheless, it does not happen immediately. If a gas is

very diluted, where the interparticle distance is much larger than the interaction range,

then the two-body collisions can prevail over three-body ones. The energy conservation

forbids creating molecules and crystallising of a system due to two-body interactions

only [1]. Thus cold and diluted conditions allow observing quantum mechanical effect on

a macroscopic level.

Cooling atomic vapour to temperatures of nano Kelvins (nK ) where quantum effects

occur, is a challenge. However, this may be achieved with Doppler cooling and evaporative

cooling. Doppler cooling is a method involving opposing laser beams with energy lower

than the energy difference between levels in an atom [2]. In the case when an atom

absorbs a photon, it will be excited to a higher energy state. If the photon comes from

the opposite beam, the atom will slow down. Obviously, not all photons come from the

opposite direction. The crucial fact is the position of the resonance frequency, which allows

to absorb photons from the a relevant beams. That cooling method assures temperatures

of around mK [2]. However, it is still too hot, and the second method is necessary. In

evaporative cooling, one reduces the depth of the potential trap confining the atoms,

permitting high-energy particles to escape therefore cooling the system. In this way, one

may reach the temperature of the condensation.

The first observations of the BEC in cold gases took place in 1995 when three various

groups studying ultra-cold atoms observed the BEC in systems of rubidium [3], sodium [4],

and lithium [5] gases. Six years later, E. Cornell, C. Wieman and W. Ketterle were honoured

with the Nobel prize for conducting experiments on BEC and studying its properties. In

1995’s experiments, the primary role was played only by short-range interactions. In the

case of ultracold and dilute bosons, they are well approximated by a zero-range contact

potential V (r) = gδ(r), where g , δ(r) and r, denote respectively a coupling constant, Dirac

delta and a relative position. Moreover, these interactions may be thoroughly manipulated

using Feshbach resonances [6] – nowadays a standard tool, demonstrated for the first

time in a BEC of sodium atoms in 1998 [7]. Confirmation of the condensation and the

possibility of precise control of the strength of interparticle forces stimulated further

9



1. Introduction

Figure 1.1. Simple visualisation of the evaporative cooling. Decreasing the trap height causes
escaping of high-energy particles.

studies and another experiment on BECs. New subjects of investigation became dipolar

interactions, i.e. interactions with long-range properties [8, 9]. Studies on condensates

consisting of chromium atoms with large magnetic dipole moments proved that around

unstable solutions stationary wave functions have new internal structures [8]. Several

years later, scientists carried out an experiment on such a system [10], which allowed for

a detailed analysis of dipolar quantum gases [11]. However, it turns out that BEC offers

a whole new family of exciting phenomena.

1.2. Formation of quantum droplets

The combination of two types of interactions, non-local and short-range, has led to

a new state of ultra dilute liquid - a self-bound quantum droplet arising directly from

a BEC. A quantum droplet was observed for the first time in 2016 by a group led by T. Pfau

[12] and was predicted shortly before by D. Petrov in 2015 in a two-component BEC [13].

At first glance, according to Van der Waals’ theory [14], a liquid should not be formed in

such a dilute system as a BEC. Nevertheless, this is possible due to quantum fluctuations

that contribute a correction to the mean-field description of BEC. The corrections were

computed by Lee, Huang and Yang (LHY) in the 1950s [15].

The many-body description of the system is difficult to handle. To predict the basic

properties of a many-body system one uses usually approximated methods. The simplest

is the mean-field theory, which assumes that particles occupy only one state although

interactions may perturb it. According to that, the energy density of a condensed weakly

interacting uniform Bose system reads

ε

V
= 1

2
g n2, (1.1)

where n denotes the system’s density and V is the system’s volume. However, in some

physical situations, it turns out that corrections to mean-field energy are relevant. The first

10



1. Introduction

is the LHY correction, which takes into account that BEC undergoes fluctuations even at

T = 0. The reason for that are interactions between particles, which cause non-condensed

states still have a small and fluctuating occupation. Therefore, Eq. (1.1) has an additional

term as follows1

ε

V
= 1

2
g n2 +αLHY

(
g n

)5/2, (1.2)

where αLHY is a constant. For a typical one-component BEC system, both terms in Eq.

(1.2) have the same sign, and nothing interesting happens. However, a new effect may

appear, when these kinds of corrections become dominant. It happens where there are two

contributions to the mean-field energy, with different signs, such that the contributions

almost cancel each other. Such a situation can take place for instance in a Bose-Bose

mixture. Then the energy density (1.1) is modified and reads

εMIX

V
= 1

2
g11n2

1 +
1

2
g22n2

2 + g12n1n2, (1.3)

where g11, g22 are intraspecies coupling constants, meanwhile g12 is interspecies one

and n1, n2 denotes densities of the first and the second component. Such a system

may be miscible in the case when effective interactions are repulsive and dominate over

inter-component forces and immiscible if interspecies interactions prevail. In the last case,

when g12 is negative, it may happen in the mean-field theory that the gas collapses, in the

process known as Bose-Nova [16]. In the special case, when the mean-field term is close to

zero due to the opposite signs of the interactions, the dominant role may be played by the

LHY correction. In this situation, the system can form a liquid instead of collapsing [13].

In such a case, the LHY term depends on intra- and interspecies coupling constants and

stabilises the droplet against collapse. That is the situation D. Petrov has considered [13].

The experiment with mixtures was carried out in 2018 and confirmed Petrov’s predictions

[17].

On the other hand, the result obtained by T. Pfau’s group [12] was completely unex-

pected. The primary assumption of this experiment was the investigation of condensate

excitation owing to a change in the interactions. The used system was a one-component

BEC with dysprosium atoms characterised by huge magnetic moments. The expectation

was that the system would shrink due to the impact of the attractive forces and finally

explode. Nevertheless, such a situation did not arise, but the system spontaneously formed

groups of atoms. These newly created forms were characterised by relatively long lifetime

and superfluidity. The responsible for this phenomenon was dysprosium, which is char-

acterised by repulsive interactions and anisotropic long-range dipolar ones that make

a liquid stable possible. Shortly afterwards, an analogous experiment was conducted by

1 Note that it concerns a three-dimensional system. In lower dimensions, the LHY term may have
a slightly different form and sign.
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1. Introduction

F. Ferlaino’s group, where quantum droplets were also observed [18]. That group used

erbium atoms, which have similar properties to dysprosium ones.

The formation of quantum droplets appears natural, provided that there are inter-

actions of a different nature in the system. The competing forces ensure that one may

reach a constant density, thereby obtaining a local energy minimum. Thus, quantum

droplets may be created in both Bose-Bose mixtures and one-component BECs with dipo-

lar interactions. Moreover, the last years showed the phenomenon also occurs in lower

dimensions [19–21], and additionally, researchers investigated the excitation spectrum of

the 1D systems [22, 23].

1.3. Motivation and structure of thesis

In this thesis, we investigate a one-dimensional Bose system with extremely strong ef-

fective repulsive forces and non-local weak anisotropic dipolar interactions with attractive

nature. It turned out, that in such a system it is also possible to create a quantum droplet

[24]. In that paper, the so-called Lieb-Liniger Gross-Pitaevskii equation (LLGPE) was used

[25–28]. The LLGPE provides new opportunities to investigate one-dimensional quantum

droplets. This is possible by the Lieb-Liniger description, which is the exact description

of an interacting one-dimensional Bose system [29, 30]. In this model, the ground state

energy of the one-dimensional BEC is known for any strength of the interaction. Therefore,

there is no necessity to introduce the LHY correction to the system’s description, and the

droplet arises from effects beyond the mean-field theory.

So far, the properties of such systems are not well-known. In particular, the thermo-

dynamics of droplets is not fully understood. Therefore, the main goal of the thesis is to

investigate its behaviour depending on finite temperature. For this purpose, in Section

2, we discuss theoretical aspects of the LLGPE, starting from the many-body problem

and introducing respective interaction terms. Subsequently, in Section 3, we model and

present the behaviour of quantum droplets subjected to some perturbation, concluding

about various ways and amounts in which energy is added to the system. The last two

sections are based on observations and conclusions from the preceding sections, and

literature [23, 24]. In these sections, we propose a simplified model of a one-dimensional

quantum droplet. For this purpose, in Section 4, we discuss statistical ensembles and the

transition of the system’s description from grand canonical ensemble to canonical one

using Cauchy’s integration formula. In order to verify that method, we present well-known

results for typical BECs. Finally, in Section 5, we create and analyse a phenomenological

model of a one-dimensional quantum droplet and present the numerical results using the

method derived in Section 4.
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2. Theory of many-body quantum mechanics for bosonic

systems

This section introduces the basics of many-body quantum mechanics for bosonic sys-

tems. We derive the Hamiltonian of a many-body Bose system in the second quantisation

formalism and derive the well-known Gross-Pitaevskii equation (GPE). Next, we focus on

the Lieb-Liniger model, for which one finds formulas for eigenenergies for any interaction

strength. We use them to construct LLGPE. Finally, we add the anisotropic dipolar term to

LLGPE, which makes it possible to study one-dimensional quantum droplets.

2.1. Hamiltonian of many-body Bose system

The quantum-mechanical description of the many-body systems is still challenging.

Nevertheless, one may obtain appropriate equations using second quantisation formalism

and the mean-field theory. Especially the second theory owes its popularity, among other

things, to the approximate description of BECs.

The derivation and the subsequent presentation of the general form of the many-body

Hamiltonian and the Gross-Pitaevskii equation primarily relies on the Ref. [1]. Let us con-

sider a one-dimensional system consisting of N ultra-cold interacting bosons. Interaction

between particles is described by the two-body interatomic potential V
(
xi − x j

)
. Such

a system may be expressed by the following Hamiltonian [1]

Ĥ =
N∑

i=1

[
− ħ2

2m

∂2

∂x2
i

+Vex
(
xi

)]+ 1

2

N∑
i ̸= j=1

V
(
xi −x j

)
, (2.1)

where Vex
(
xi

)
is an external trapping potential. We focus on bosons, therefore we look

for eigenstates of Ĥ that are symmetric upon particles exchange. It is beneficial to use

here the Fock states. Writing these states in Fock space, one does not care which particle

occupies which state but only how many particles are in a specific state. In this case, the

wave function may be written as

∣∣ψ〉=∑
n

cn |n〉 , |n〉 = |n0,n1,n2, ...〉 . (2.2)

where cn and |n〉 are respectively expansion coefficients and eigenstates in a Fock basis. We

use bosonic creation and annihilation operators â†
i and âi , respectively, i.e. the operators

obeying[
âi , â†

j

]
= δi j , â†

i |ni 〉 =
√

ni +1 |ni +1〉 , âi |ni 〉 =p
ni |ni −1〉 , âi |0〉 = 0. (2.3)

13



2. Theory of many-body quantum mechanics for bosonic systems

where |0〉 is the vacuum state (a state without any particle). Furthermore â†
i âi = n̂i is the

particle number operator. Using â†
i one may write any state as follows

|ni 〉 = 1p
ni !

(
â†

i

)ni |0〉 , |n〉 =
N∏

i=0

1p
ni !

(
â†

i

)ni |0〉 . (2.4)

The equation (2.1) can be reformulated with the help of the creation and annihilation

operators as follows [1]

Ĥ =
∞∑

i=0
εi â†

i âi + 1

2

∑
i , j ,i ′, j ′

Vi , j ,i ′, j ′ â
†
i â†

j âi ′ â j ′ , (2.5)

where εi is the energy of the i -th level of the trap which corresponds to a single-particle

wave function φi
(
x
)

εi = 〈i | Ĥnon−int |i 〉 =
∫

d x φ∗
i

(
x
)[− ħ2

2m

∂2

∂x2
+Vex

(
x
)]
φi

(
x
)
. (2.6)

Similarly one can define the matrix elements Vi , j ,i ′, j ′ expressing the interaction terms

Vi , j ,i ′, j ′ =
〈

i , j
∣∣V̂

∣∣i ′, j ′
〉= ∫

d x d x ′ φ∗
i

(
x
)
φ∗

j

(
x ′)V

(
x −x ′)φi ′

(
x
)
φ j ′

(
x ′). (2.7)

Using Eq. (2.5) one may investigate the ground state and other physical properties of the

system.

2.2. Gross-Pitaevskii equation for weakly effective interactions

Solving the exact many-body Schrödinger equation is a difficult problem One of the

most widely-used methods is the mean-field approach, which allows for studying trapped

weakly interacting bosons efficiently [31]. Suppose that in temperature T = 0 all bosons

occupy the same lowest energy state of a trap. Such a situation corresponds to a well-known

phenomenon, i.e. the Bose-Einstein condensation. A wave function of the ideal (without

interactions) Bose system may be expressed as a product when all particles are in the same

single-particle quantum state

ψBEC
(
x
)=φ(

x1
)
φ

(
x2

)
...φ

(
xN

)= N∏
i=1

φ
(
xi

)
. (2.8)

Once interactions between particles are accounted for, such a wave function constitutes

only some approximation. To derive an approximate equation which describes condensate,

one might use the Heisenberg equation with many-body Hamiltonian (2.5) and boson

field operator or apply a variational procedure. However, before we do that, let us make

14



2. Theory of many-body quantum mechanics for bosonic systems

some assumptions about V
(
x − x ′). For a dilute2 and cold gas the interaction potential

V
(
x −x ′) may be replaced by an effective interaction, characterised by a single parameter

(scattering length a) [31]

V
(
x −x ′)= gδ

(
x −x ′), g = 4πħ2a

m
, (2.9)

where g is the coupling constant. Interactions are repulsive if g > 0 and attractive when

g < 0. This potential was initially introduced by E. Fermi and has the same properties at

a low-energy regime as the exact potential [32]. Now we compute the average value of the

energy operator, given in Eq. (2.5) in the state ψBEC
(
x
)
. The direct computations give

E
[
φ,φ∗]= N

∫
d x

[
− ħ2

2m
φ∗(

x
) ∂2

∂x2
φ

(
x
)+Vex

(
x
)∣∣φ(

x
)∣∣2 + g

2

(
N −1

)∣∣φ(
x
)∣∣4

]
. (2.10)

The expression above denotes the energy functional with normalisation
∫

d x
∣∣φ(

x
)∣∣2 = 1.

Introduce Lagrange multiplier µ causes that minimalisation condition takes the following

form

µφ
(
x
)= [

− ħ2

2m

∂2

∂x2
+Vex

(
x
)+ g N

∣∣φ(
x
)∣∣2

]
φ

(
x
)
, (2.11)

where the Lagrange multiplier µ corresponds to a chemical potential of the system. On the

mean-field level, we may neglect "−1" in the (N−1) expression, which we have done above.

Equation (2.11) is the stationary Gross-Pitaevskii equation. It has also a time-dependent

version

iħ ∂

∂t
φ

(
x, t

)= [
− ħ2

2m

∂2

∂x2
+Vex

(
x
)+ g N

∣∣φ(
x, t

)∣∣2
]
φ

(
x, t

)
. (2.12)

The validity of GPE assumes that scattering length a is much smaller than the average

interatomic distance [31]. It has been proved that GPE correctly describes weakly inter-

acting bosons, including low-energy excitations and solitons [33]. Nevertheless, it turns

out that even in this regime, the equation may not predict interesting phenomena such as

quantum depletion [34, 35].

2.3. Exact description of the interacting Bose gas - Lieb-Liniger model

In the previous subsection, we discussed the GPE for weak effective interactions, where

the condensed Bose system may be described using the mean-field approximation with

a single-particle non-linear Schrödinger equation. Nevertheless, such an equation does

not take into account mutual quantum correlations and LHY correction. One solution

to studying quantum droplets is adding that correction, which is relatively simple for

three-dimensional systems. In that way, one can adequately describe Bose-Bose mix-

tures and dipolar quantum gases. The situation becomes more challenging when one

2 Saying "dilute" we mean that na3 ≪ 1 condition is met, where n and a denotes respectively gas
density and scattering length.
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2. Theory of many-body quantum mechanics for bosonic systems

wants to investigate lower dimensions or arbitrarily strong interactions, where quantum

fluctuations are significantly enhanced. In such a regime, LHY is not applicable.

On the other hand, in 1D there is a known exact solution to a quantum many-body

model of interacting bosons, even in the case of strong interparticle correlations. This

model, known as the Lieb-Liniger (LL) model [29, 30], assumes interaction potential in

the form V
(
x −x ′)= gδ

(
x −x ′), which allows to study homogeneous gas with short-range

forces, i.e. the topic of this master’s thesis. The ground state energy, found in [29], reads

ε0
(
N ,L

)= ħ2

2m

N 3

L2
eLL

(
γ
)
, γ= m

ħ2

g L

N
, (2.13)

where γ is the dimensionless Lieb parameter and eLL
(
γ
)

is a monotonically increasing

function of γ. That function does not have an explicit form, but in the limit of N , L →∞
with ρ = N

/
L = const can be found with the Fredholm integral equations [30]. Neverthe-

less, it is known with extremely accurate approximation as polynomial [36] (see appendix

A). There are three general regimes for eLL
(
γ
)
. In the case when γ = 0, there are no ef-

fective interactions and eLL
(
γ
) = 0. For weakly interacting particles i.e. γ≪ 1, one has

eLL
(
γ
) ≈ γ− 4γ3/2

/(
3π

)
, where the negative term may be taken as the LHY correction.

For infinitely strong forces i.e. γ→ ∞, we have eLL
(
γ
) ≈ π2

/
3, which gives Girardeau’s

ground state solution of extremely strong repulsive bosons [37]. Now, with the ground

state energy (2.13), we may calculate pressure pLL
(
N ,L

)
and chemical potential µLL

(
N ,L

)
as appropriate derivatives [23, 38]

pLL
(
N ,L

)=− ∂

∂L
ε0

(
N ,L

)= ħ2

2m

N 3

L3

[
2eLL

(
γ
)−γ ∂

∂γ
eLL

(
γ
)]

(2.14)

µLL
(
N ,L

)= ∂

∂N
ε0

(
N ,L

)= ħ2

2m

N 2

L2

[
3eLL

(
γ
)−γ ∂

∂γ
eLL

(
γ
)]

. (2.15)

We aim to derive an equation that properly describes interacting Bose gas with any strength

of short-range forces. We may introduce an adequate equation via quantum hydrodynam-

ics equations using an exact solution to the ground state energy and thereby the pressure

and chemical potential. That is a more general approach and alternative formulation of

the Schrödinger equation introduced by E. Madelung. Assuming we treat an atomic cloud

as divided into small parts, but at the same time, these consist of many particles, one may

write Euler and continuity equations as follows

∂

∂t
ρ+ ∂

∂x

(
ρν

)= 0, (2.16)

∂

∂t
ν+ν ∂

∂x
ν=− 1

mρ

∂

∂x
p, (2.17)

where ρ ≡ ρ(
x, t

)
, ν≡ ν(

x, t
)

and p ≡ p
(
x, t

)
denotes respectively local gas density, velocity
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of particles cloud and pressure. What is more, we assume local equilibrium in each of

these parts under [39]. The equation (2.17) may also consist of so-called quantum pressure,

which may be neglected considering slow-changing density [26]. Now by comparing (2.14)

and (2.15) we may write the Euler equation as3

∂

∂t
ν+ν ∂

∂x
ν=− 1

m

∂

∂x
µLL

[
ρ
]

. (2.18)

Introducing one complex field

φ
(
x, t

)=
√
ρ
(
x, t

)
N

e iϕ
(

x,t
)

with
ħ
m

∂

∂x
ϕ

(
x, t

)= ν(
x, t

)
, (2.19)

we combine continuity and Euler equations into [25, 26] (see appendix B for evidence)

iħ ∂

∂t
φ

(
x, t

)= [
− ħ2

2m

∂2

∂x2
+µLL

[
N

∣∣φ∣∣2
]]
φ

(
x, t

)
, (2.20)

where

µLL

[
N

∣∣φ∣∣2
]
= ħ2

2m
N 2

∣∣φ∣∣4

[
3eLL

(
κ

N
∣∣φ∣∣2

)
− κ

N
∣∣φ∣∣2 e ′

LL

(
κ

N
∣∣φ∣∣2

)]
, κ= g m

ħ2
. (2.21)

The expression (2.20) is the Lieb-Liniger Gross-Pitaevskii equation and was used, among

other things, for a description of shock waves [26, 27]. Let us consider two regimes of

LLGPE. For weakly interacting particles the function eLL
(
γ
)

in the first approximation

order is eLL
(
γ
)≈ γ andµLL

[
N

∣∣φ∣∣2
]
= g N

∣∣φ∣∣2. We see that we obtained the mean-field term

from the Gross-Pitaevskii equation. The second regime are extremely repulsive contact

interactions with eLL
(
γ
)≈π2

/
3 and we obtain the equation proposed by Kolomeisky [40]

iħ ∂

∂t
φ

(
x, t

)= [
− ħ2

2m

∂2

∂x2
+ ħ2π2

2m
N 2

∣∣φ∣∣4
]
φ

(
x, t

)
. (2.22)

At first, it seems pointless to introduce an effective mean-field-like model like as

(2.20), for a many-body system which is exactly solvable, i.e. the LL model. On the other

hand, the many-body solutions of E. Lieb are not handy, and still, they are often studied

numerically with results limited to a small number of atoms only. The equation (2.20) is,

therefore, helpful to study large systems still giving reliable results for strong interactions

(see benchmarks in [41]). Moreover, Eq. (2.20) is a good starting point to construct models

extending the LL description, where for instance, also other types of interaction potentials

are present.

3 Notice that we assumed a slow-changing density profile which allows us to significantly simplify
comparing pressure with chemical potential because of appropriate derivative over density towards zero.
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2.4. Extension of Lieb-Liniger model to dipolar interactions

So far, we have restricted the description of a system to short-range forces only. On

the other hand, a quantum droplet may emerge due to the interplay between the short-

and long-range dipolar interactions. Generally, magnetic dipole interaction between two

particles with dipole moments µ1, µ2 and positions r1, r2 has the following form [42]

Vdd
(
r1,r2

)= µ0

4π

[
µ1 ·µ2

r 3
− 3

(
µ1 · r

)(
µ2 · r

)
r 5

]
, (2.23)

where µ0 is the vacuum permeability and r = ∣∣r ∣∣= ∣∣r1 − r2
∣∣. Supposing we consider one

kind of dipolar gas polarised along one direction we may write that

Vdd
(
r1,r2

)= µ0µ
2
D

4π

1−3cos2
(
θ
)

r 3
, cos

(
θ
)= µD · r∣∣µD

∣∣ · ∣∣r ∣∣ , µD ≡µ1 =µ2. (2.24)

Properties of dipolar interactions are related to dipole placement, thus these are anisotropic

interactions. In general, one may distinguish between two cases, i.e. repulsive and attrac-

tive dipolar interactions. In the case when dipoles are configured in head-to-tail (→→)

position, then 1−3cos2
(
0
) < 0 and forces are attractive. For side-by-side (↑↑) configu-

rations these are repulsive, i.e. 1−3cos2
(
π
/

2
) > 0. Now we want to extend that dipolar

Figure 2.1. Sketch of specific dipole configurations. Side-by-side configuration causes repulsive
interactions. Head-to-tail configuration causes attractive interactions.

potential to the case of a quasi-one-dimensional harmonic trap, where dipoles are con-

fined in a cigar-shaped harmonic trap [43]. However, before we do that let us make some

assumptions about dipolar interaction. In the case of 3D dipole-dipole interaction, it

is actually long-range and changes like 1
/

r 3. However, if we want to obtain a model of

1D dipolar interaction, one needs to consider the 3D case and assume that atoms are

tightly confined in the perpendicular directions (Y and Z ) due to a harmonic trap, but

free in the X direction. That comes down to the assumption that in every 3D equation, the

many-body wave function in perpendicular directions is the Gaussian function. Therefore,

further integration results in effective dipolar interaction, which may be written as follows

(see [43] for details)

Vdd
(
x −x ′)=−gddV σ

dd

(
x −x ′)=−gdd

1

σ
Ṽdd

(
x −x ′

σ

)
, (2.25)
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with

gdd =−µ0µ
2
D

4π

1−3cos2θ

σ2
, (2.26)

and

Ṽdd (u) = 1

4

[
−2

∣∣u∣∣+p
2π

(
1+u2)exp

(
u2

2

)
erfc

( ∣∣u∣∣
p

2

)]
, (2.27)

where erfc is the complementary error function, and σ=
√

ħ/(
mω⊥

)
denotes the trans-

verse harmonic oscillator length, meanwhile ω⊥ is the frequency of the trap in perpendic-

ular direction [43]. We consider a head-to-tail (→→) configuration only, therefore through-

out the whole thesis we use gdd =µ0µ
2
D

/(
2πσ2

)
. We add dipolar interaction exactly in the

same way contact interactions are usually included to get the GPE. Therefore, we get the

LLGPE extended by dipolar interaction term [8, 9, 11] for specific dipolar potential

iħ ∂

∂t
φ

(
x, t

)= [
− ħ2

2m

∂2

∂x2
+µLL

[
N

∣∣φ∣∣2
]]
φ

(
x, t

)
− gddN

∫
d x ′ V σ

dd

(
x −x ′)∣∣φ(

x ′, t
)∣∣2
φ

(
x, t

)
.

(2.28)

In the special case when φ
(
x, t

)
is in the following form

φ
(
x, t

)=φ(
x
)

exp

(
− iµ

ħ t

)
, (2.29)

Eq. (2.28) has the stationary form as follows

µφ
(
x
)= [

− ħ2

2m

∂2

∂x2
+µLL

[
N

∣∣φ∣∣2
]]
φ

(
x
)− gddN

∫
d x ′ V σ

dd

(
x −x ′)∣∣φ(

x ′)∣∣2
φ

(
x
)
. (2.30)

In the subsequent chapter, we will discuss the stationary Lieb-Liniger Gross-Pitaevskii

equation with dipolar interaction (2.30). Such an equation offers several types of solu-

tions, i.e. bright solitons, quantum droplets and the special case of quantum droplets, i.e.

fermionised quantum droplets, for which an analytical solution is known [23].
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3. Numerical results and observations for LLGPE

This chapter presents numerical results of imaginary-time evolution (ITE) and real-time

evolution (RTE) methods for the LLGPE. We precisely find the ground state of the quan-

tum droplet using the ITE method. Afterwards, we add energy to that state through some

perturbation in the form of noise and observe its evolution in real time. The droplets’

behaviour allows us to motivate a model for a droplet at a finite temperature introduced in

the following sections.

3.1. Imaginary time evolution

There are several methods to compute the system eigenvalues and eigenstates. One of

these is the so-called imaginary time evolution (ITE), e.g. [44]. The method is based on

changing the time variable in the propagator for an imaginary time. Therefore, instead

of quantum state oscillation, one has the exponential decay of it. Suppose some system

is described by wave function ψ(x). The system’s state may always be written in the

eigenstates base i.e. ∣∣ψ(x)
〉=∑

n
cn

∣∣ψn(x)
〉

, (3.1)

where cn are expansion coefficients in this base. Time evolution in quantum mechanics is

described by the Schrödinger equation

iħ ∂

∂t
ψ(x, t ) = Ĥψ(x, t ), (3.2)

with the time-independent Hamiltonian Ĥ . In order to find the time dependence ofψ(x, t ),

we have to solve the eigenvalue equation for the Ĥ

Ĥ
∣∣ψn(x)

〉= En
∣∣ψn(x)

〉
, (3.3)

where
∣∣ψn(x)

〉
is the eigenstate and En is the eigenvalue of the Ĥ . At any later time, the

wave function ψ(x, t ) reads

∣∣ψ(x, t )
〉=∑

n
cn exp

(
− i En

ħ t

)∣∣ψn(x)
〉

. (3.4)

This means that each eigenstate oscillates with a frequency proportional to En
/ħ. When

we consider the change of variables i t → τ, we may treat time as an imaginary time. In

consequence, we have

∣∣ψ(x,τ)
〉=∑

n
cn exp

(
−En

ħ τ

)∣∣ψn(x)
〉

. (3.5)
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Here in the imaginary time, we do not have wave function as the oscillating superposition

of energy eigenstates but as the exponential decay of these states. For an appropriately

long time τ (suppose τ→∞, just to indicate that it is a relatively long time), we obtain that

∣∣ψ(x,τ→∞)
〉≈ c0 exp

(
−E0

ħ τ

)∣∣ψ0(x)
〉

, (3.6)

where E0 and ψ0(x) are respectively the ground state energy and ground state wave func-

tion. Given that the E0 is the lowest energy, the exponential decay in Eq. (3.6) is the slowest.

This way, we may obtain the ground state of Ĥ . This method works well in case when some

contribution of the ground state exists. Otherwise, one gets just the lowest energy state.

Moreover, one has to normalise the wave function in each time step. Otherwise, such an

equation will converge to zero.

Figure 3.1. Energy convergence to the droplet ground state using the ITE method. The presented
case corresponds to the LLGPE following parameters N = 200, g = 20000, gdd = 1000 and σ= 0.015.

In what follows, we will use l , ml 2
/ħ, ħ2

/
ml 2, and ħ2

/
ml 2kB as the units of length, time,

energy, and temperature, respectively.

3.2. Ground states of Lieb-Liniger Gross-Pitaevskii equation

A one-dimensional quantum droplet is one of the peculiar stationary solutions to the

LLGPE. There is a regime, hereafter called the analytical regime, in which many properties

of stationary solutions can be derived analytically. This regime corresponds to the case

when one considers a system with weak long-range dipolar interactions where σ→ 0

and powerful short-range contact repulsion with g →∞. Such assumptions substantially

simplify the stationary form of LLGPE (2.30). The condition σ→ 0 causes that dipolar
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potential takes the form of a simple delta function, meanwhile the condition g →∞ allows

to replace Lieb-Liniger potential with a constant expression because of eLL
(
γ→∞) →

π2
/

3. One may read more precisely about these assumptions and the limits of their

applicability in [23]. Nevertheless, one should wonder about condition σ→ 0, given that

this is a range of non-local effective dipolar potential. In the hydrodynamical approach,

it was assumed that σ is much larger than the interparticle distance d . In fact, there are

regimes, of N →∞, in which both d and σ converges to 0, always satisfying the condition

σ≫ d . All of this makes it possible to write the stationary LLGPE as follows

µφ(x) =
[
− ħ2

2m

∂2

∂x2
+ ħ2π2

2m
N 2

∣∣φ(x)
∣∣4 − gddN

∣∣φ(x)
∣∣2

]
φ(x) (3.7)

In this case, solutions are characterised only by two parameters. These are the number of

particles N and dipolar coupling constant gdd. Below we present several cases of stationary

solutions of quantum droplets in the assumed regime. In Fig. 3.2, we can observe that the

Figure 3.2. Stationary solutions to the LLGPE for different particle numbers (left) and different
dipolar coupling constant (right). They present density profiles of one-dimensional quantum
droplets obtained using the ITE method.

system’s density profile has a flat area where density is with reasonable approximation

constant and characteristic edges where it quickly falls. However, before we pay special

attention to the adopted parameters, let us introduce a valuable analytical formula. It

turns out that the quantum droplet width depends linearly on the number of particles

and is inversely proportional to the dipolar coupling constant. That width was found

analytically and reads [23]

W = 2π2ħ2

3m

Nd

gdd
, (3.8)

where Nd = N is the number of particles that compose quantum droplet. Formula (3.8) is

valid in the analytical regime introduced above, so only two parameters characterise it. In

both cases presented in Fig. 3.2, the effective coupling constant is around 20 times greater
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than the dipolar one, which allows us to think that the parameters fulfil the assumptions

of the analytical regime. Subsequently, it is worth mentioning the non-local interaction

range. Interparticle distance are just a ratio of droplet width W and the number of particles

that form it, so d = W
/

N , where W is defined as (3.8). In the left panel of Fig. 3.2, with

a different number of particles, that expression is constant and approximately equal to

d ≈ 0.0066 l . That denotes the dipolar interaction range is around 2.27 times greater than

the interparticle distance. In the right panel of Fig. 3.2, with different gdd and the same

N one gets values from 1.83 to 2.54. Moreover, the relative errors of numerical widths

obtained from the ITE method and analytical formula remain lower than 1%. It is also

worth noting that density profiles are similar to rectangular shapes, which will prove

crucial when introducing the droplet model in Section 5.

The presence of droplets is not limited to the above-mentioned parameter regime.

Below, we present other stationary solutions still droplet-like, but outside that regime.

These droplets do not fulfil the analytical width formula (3.8).

Figure 3.3. Stationary solutions to the LLGPE for different particle numbers (left) and different
dipolar interaction range (right). In this case, the analytical regime of LLGPE is not fulfilled.

It turns out that the search for stationary solutions for the strict quantum droplet

regime is a difficult numerical task. Even if one finds with the ITE method a candidate

for the ground state, one needs to verify it. We use the real-time evolution of such a state

and assess whether the density is approximately constant. Failure to meet this condition

manifests as "quantum droplet breathing". Of course, for such cases, we were improving

our numerics using the ITE method increasing the precision of the calculations.
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Figure 3.4. Numerical test: Evolution of the solution to the LLGPE in the quantum droplet regime
of interactions found with the ITE. The quantum droplet has the following parameters N = 200,
g = 20000, gdd = 1000 and σ= 0.015.

Figure 3.5. The stationary solution, which has been found with too low accuracy. It is characterised
by "droplet breathing", which one may observe on the left side of the figure. The system has the
same physical parameters as in Fig. 3.4.
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3.3. Evolution of perturbed quantum droplets in real time

Conducting the real-time evolution of the ground state, obviously from the definition,

cannot change this state. Regardless, in the case when the stationary solution would be in

a certain way perturbed, then it is no longer a ground state, and real-time dynamics may

be quite complex. It turns out that adding some energy to the system in the ground state

may result in emitting particles from a quantum droplet. This is exactly the situation we

observed during the simulation. When we introduce some energy to the system, then some

particles leave a droplet, and it shrinks according to the formula (3.8). We can therefore

expect that adding different energy values to the system will result in different numbers

of particles leaving a droplet. For this purpose, we would have to run many simulations

for different energies to observe subsequent dynamics. In Fig. 3.6 we show a perturbed

Figure 3.6. The stationary solution to the LLGPE in the analytical interaction regime, perturbed
by a noise in the form of a deterministic sine combination. The figure on the left corresponds to
a situation before a real-time evolution but with additional energy. The figure on the right presents
the system after its evolution.

stationary solution to the LLGPE. In this case, the perturbation is fully deterministic and

it is in the form of a linear combination of the sine functions with different but constant

weights as follows

ξ(x) = A
[
a1 sin

(
a2 f x

)+b1 sin
(
b2e f x

)+ c1 sin
(
c2π f x

)]
, (3.9)

where A, a1, a2, b1, b2, c1 and c2 are constants, and f denotes a noise frequency. By adding

around 4.5% of ground state energy, we have caused that several particles escaped from the

droplet. We perturbed the droplet with different noise functions, including sine function,

linear sine combination and random values from uniform and gaussian distributions.

For a given added energy, each type of perturbation leads to similar dynamics. We may

therefore claim that this phenomenon only depends on the amount of the extra energy

but not on the perturbation details.
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Figure 3.7. Parturbation of stationary solutions to the LLGPE. The system has the following param-
eters N = 200, g = 20000, gdd = 1000 and σ= 0.015. Each subsequent row presents the quantum
droplet ground state with a certain perturbation. We subsequently introduced 23.5% and 46.1% of
ground state energy to the system.

Figure 3.8. Real-time evolution of a disturbed quantum droplet with following parameters N = 200,
g = 20000, gdd = 1000 and σ= 0.015. This is the case in which we added to the system 23.5% of its
ground state energy.
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Figure 3.9. Real-time evolution of a disturbed quantum droplet with following parameters N = 200,
g = 20000, gdd = 1000 and σ= 0.015. In this case, we added 46.1% of the ground state energy. We
can easily see that particles leave the droplet.

One may calculate the width of the quantum droplet during evolution. However, this

is not a simple problem because the system’s dynamic is complicated in the early stages of

evolution. Nevertheless, we can do it because we are interested in what is at the end of the

evolution, and the dynamic is stabilised there. Thus, we discard the early dynamic and

average the droplet width only there, where the dynamic is stabilised. Below we present

the figure where one can see perturbed quantum droplet width during evolutions. In Fig.

Figure 3.10. Quantum droplet width during real-time evolution. Figures corresponding respectively
to 23.5% and 46.1% of ground state energy introduced.

3.10 we may see that the system relatively quickly reaches an equilibrium state. In this

way, by adding 23.5% of the ground state energy, the width is reduced from W
/

L ≈ 0.110
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to W
/

L ≈ 0.089, which constitutes a shrinkage of the droplet by around 19%. In turn,

introducing 46.1% of the ground state energy reduced this value to W
/

L ≈ 0.074, meaning

that the system shrinks approximately by 33%. The L parameter denotes the total width of

the system and in the above simulations was equal to L = 12 l .

The observations contained in this chapter are as follows. We can see that bringing the

system to the ground state is quite challenging because one has to provide high calculation

accuracy and fulfil the analytical regime simultaneously. Nevertheless, we can do this for

several cases, allowing for a real-time evolution with additional energy from perturbation.

It turns out that the introduction of additional energy causes particles to begin leaving the

droplet. This phenomenon manifests as droplet shrinkage. With increasing the additional

energy value, more particles escape from the droplet, and early evolution is highly complex

and difficult to analyse. Moreover, adding a huge amount of energy (of the order of 100%

of the ground state energy) causes droplet splits, and only free particles exist in the system.

We would like to study how a droplet evaporates due to heating, given that it reaches an

equilibrium with the emitted particles. Our observations summarised above motivate

us to propose a simplified phenomenological model, which would capture the essential

properties of a droplet and allow us to study its statistical properties. Before introducing

our model, we will recall the standard methods of statistical mechanics, which will be

used in further chapters. Therefore, the following chapters are dedicated to introducing

statistical ensembles that are applied to bosonic systems. The last chapter contains the

presentation of the simple quantum droplet model.
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This chapter introduces necessary properties of statistical ensembles for non-interacting

bosons. We use Cauchy’s integral formula to compute some properties of the system in the

canonical ensemble using the grand canonical one. This procedure gives excellent results for

typical BECs.

4.1. Grand canonical ensemble for ideal Bose gas

Statistical physics describes microscopic properties of physical systems consisting of

many particles using probability theory. In general, one can distinguish three statistical

ensembles. The microcanonical ensemble corresponds to an isolated system with fixed

energy E and a fixed number of particles N . It is assumed that each micro-state is equally

probable. The second ensemble is the canonical ensemble, with a fixed temperature

and number of particles corresponding to a closed system. Such a system may exchange

energy with its environment, and the probability of some microscopic state depends on

its energy. The last ensemble is the grand canonical ensemble that may exchange energy

and particles with its environment, but temperature and chemical potential are fixed. In

this case, the probability of a state depends on the energy and the number of particles.

Let us consider an ideal Bose gas. Assuming that a system consists of non-interacting

particles, the system might be built up from single-particle states [45]. We may present the

total energy and total particle number as follows

E =
∞∑

i=0
niεi , N =

∞∑
i=0

ni . (4.1)

where the summation proceeds over all possible available energy states εi and the number

of the single-particle states ni . We consider Bose gas, therefore ni can be 1, 2, 3, ..., ∞. The

partition function in the grand canonical ensemble reads

Ξ
(
µ,β

)= ∑
{n1,n2,...}

exp
[−β(

E −µN
)]

, β= 1

kB T
. (4.2)

Using Eqs. (4.1) we obtain that

Ξ
(
µ,β

)= ∑
{n1,n2,...}

exp

[
−β

∞∑
i=0

ni
(
εi −µ

)]=
∞∏

i=0

∞∑
n=0

exp
[−βn

(
εi −µ

)]
=

∞∏
i=0

1

1−exp
[−β(

εi −µ
)] .

(4.3)

Derived relation is a strict formula for partition function in the grand canonical ensemble

for an ideal gas of non-interacting bosons in the one-dimensional system4 [45].

4 Notice that for no degeneracy of states, that expression is also correct. It is also valid for two and
three-dimensional systems.
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4. Theory of statistical ensembles for bosonic systems

With a formula to the grand partition function, one may calculate the mean particle

number in a given quantum state 〈n j 〉 and mean-square fluctuations σ2
〈n j 〉. For 〈n j 〉 we

have

〈n j 〉 = 1

Ξ j

∞∑
n j=0

n j exp
[−βn j

(
ε j −µ

)]= ∑∞
n j=0 n j xn j∑∞

n j=0 xn j
=

x d
d x

(∑∞
n j=0 xn j

)
∑∞

n j=0 xn j

= 1

1
/

x −1
= 1

exp
[
β

(
ε j −µ

)]−1
,

(4.4)

where Ξ j is the sum of the single-particle state j . Mean-square fluctuations in a given

quantum state may be calculated as a variance [45]

σ2
〈n j 〉 = 〈n2

j 〉−〈n j 〉2. (4.5)

To derive 〈n2
j 〉, we follow the same procedure as for 〈n j 〉, except that the differentiation

after x must be done twice, receiving

σ2
〈n j 〉 = 〈n j 〉

[〈n j 〉+1
]≈ 〈n j 〉2. (4.6)

This result predicts extremely high, non-physical fluctuations for a BEC ( j = 0 state). For

temperature T = 0 this is especially noticeable because all bosons should be in the ground

state, without fluctuations. The grand canonical ensemble indicates fluctuations in order

of the total number of particles, inconsistent with expectations because, at temperature

T = 0, fluctuations should tend towards zero. Such a result is due to non-fixed particle

number N . In experiments number of particles is fixed, and it is more reasonable to

use the canonical ensemble for the description of the system5. Nevertheless, the grand

canonical ensemble is remarkably useful in the present approach because it will allow us

to determine the particle statistics in the canonical ensemble.

4.2. Description of an ideal Bose gas in canonical ensemble

As we mentioned previously, the canonical ensemble considers systems with fixed

temperature and fixed number of particles. Therefore, it is better suited to describe experi-

ments with ultracold atoms. The ultracold cloud is usually perfectly isolated, and there is

no room for particle exchange. In the canonical ensemble, one may express the partition

function of a one-dimensional system by the following expression [46]

Z
(
N ,β

)= ∑
{n1,n2,...}

exp

[
−β

∞∑
i=0

ni
(
εi −µ

)]
δ∑

i ni ,N , (4.7)

5 Furthermore, in experiments, the energy can also be fixed, and the most appropriate ensemble for
the system’s description is microcanonical ensemble. However, calculations in this ensemble are still tough
and challenging.
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4. Theory of statistical ensembles for bosonic systems

where the summation proceeds over different single-particle states’ occupations. A signifi-

cant difference there is the Kronecker delta, which "selects" from the particular combina-

tions only these states for which the total number of particles in the system is N [46]. Such

a notation is highly problematic, however. As it turns out, a strict analytical formula to

Z
(
N ,β

)
cannot be easily provided6. Nevertheless, we can still provide a correct description

within the canonical ensemble but using the grand canonical partition function.

There is a numerical method, which allows investigating the properties of a system

in the canonical ensemble via its integral representation [46, 47]. The crucial fact is the

grand partition function can be expressed by the sum of the partition functions for the

canonical distribution

Ξ
(
µ,β

)≡Ξ(
z,β

)= ∞∑
N=0

zN Z
(
N ,β

)
, (4.8)

where the substitution is such that z = exp
(
βµ

)
. In the formula above, the term Z

(
N ,β

)
is the partition function for the canonical ensemble with the number of particles N .

That relation is extremely useful because it expresses the grand partition function as

a polynomial, where Z
(
N ,β

)
is its expansion coefficient [46]. The partition function

Z
(
N ,β

)
might be obtained using Cauchy’s integral formula [46, 47].

Cauchy’s integral formula is an essential formula from complex analysis which allows

one to evaluate a contour integral of a function in the complex plane knowing its value at

a singular point ξ [48]

f
(
ξ
)= 1

2πi

∮
C

f (z)

z −ξd z. (4.9)

A crucial relation for our study is the n-th function derivative at ξ. The following expression

follows directly from the integration by parts [48]

f (n)(ξ)= n!

2πi

∮
C

f (z)(
z −ξ)n+1 d z. (4.10)

Using the relation (4.10), we can write the partition function as the integral over a closed

contour from the grand partition function

Z
(
N ,β

)= 1

2πi

∮
C

Ξ
(
z,β

)
zN+1

d z, Ξ
(
z,β

)= ∞∏
i=0

1

1− z exp
[−βεi

] , (4.11)

with the parameter z = exp
(
βµ

)
. The relation (4.11) follows directly from Eq. (4.8). The in-

tegral in Eq. (4.11) is calculated following any closed contour that surrounds the zero-point

in the complex plane, where the parameter z performs the function of a complex vari-

able. The calculation of such an integral might be problematic. However, we can use

the so-called saddle point method, which assumes that the partition function for a large

number of particles N is mainly concentrated around its saddle point [46]. We can desig-

nate the saddle point as the integrand extremum. It is useful to write this function in the

6 One may derive an exact analytical form of the partition function for a one-dimensional harmonic
trap due to the simple form of its energy spectrum, but this is not obvious either.
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exponential form

Ξ
(
z,β

)
zN+1

= exp

[
ln
Ξ

(
z,β

)
zN+1

]
= exp

[
ln

(
Ξ

(
z,β

))− (
N +1

)
ln(z)

]
= exp

[
−

∞∑
i=0

ln
[
1− z exp

(−βεi
)]− (

N +1
)

ln(z)

]
= exp

[
f
(
z,β

)]
.

(4.12)

A condition for the integrand extremum is an extremum of the inner exponential function

∂

∂z
f
(
z,β

)= 0 → −z
∂

∂z

∞∑
i=0

ln
[
1− z exp

(−βεi
)]= N +1. (4.13)

After simple transformations, we obtain the relation to the saddle point z = z0

∞∑
i=0

z0

exp
(
βεi

)− z0
− (

N +1
)= 0. (4.14)

The method of calculating the integral reduces to calculating it along a contour passing

exactly through z = z0. For such a contour, our numerics will quickly converge. The

variable z is related to a physical parameter, i.e. the chemical potential µ, so the saddle

point must occur for a real value of z [46].

Having the integral form of the partition function and the equation to the saddle point,

we may finally write the relations to the mean particle number 〈n j 〉 and mean-square

fluctuations σ2
〈n j 〉 in the canonical ensemble. The mean number of particles occupying

j -th energy level reads

〈n j 〉 = 1

Z
(
N ,β

) ∮
C

ze−βε j

1− ze−βε j

Ξ
(
z,β

)
zN+1

d z

2πi
. (4.15)

Fluctuations, on the other hand, are given by

σ2
〈n j 〉 =

2

Z
(
N ,β

) ∮
C

(
ze−βε j

1− ze−βε j

)2
Ξ

(
z,β

)
zN+1

d z

2πi
+〈n j 〉−〈n j 〉2. (4.16)

We present the derivation of the above expressions in the appendix C.

4.3. Results of the integral method for ultracold 1D gas

To inspect the correctness of the integral method, let us consider a one-dimensional

non-interacting Bose gas. Experiments over condensates are most often performed by

placing the gas in magnetic or dipole traps [31, 32]. The potential of such a trap may

be treated with a good approximation as the potential of a one-dimensional harmonic

oscillator. The energy states of such an oscillator reads

εk =ħω
(
k + 1

2

)
≈ħωk, (4.17)
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where k = 0,1,2, ...,∞. We might neglect the ground state energy because shifting the

energy spectrum does not change the physical results. Note that all the formulas we have

derived so far are universal. Therefore, we can apply them for different energy spectra, i.e.,

εk states, regardless of whether they are states of potential well or states of a harmonic

oscillator. Firstly, we present a contour plot of the integrand module
∣∣Ξ(

z,β
)/

zN+1
∣∣ for

several combinations of N values, where we have taken into account the energy spectrum

of a one-dimensional harmonic trap in the grand partition function.

Figure 4.1. Contour plots of the integrand module
∣∣Ξ(

z,β
)/

zN+1
∣∣ for N = 2, N = 3 and N = 4. In

the figures, we can see the characteristic saddle points located on the right-hand side of each graph.
We can also see that these points are real and approximately equal to z0 ≈ 1.

The integral following a closed contour can be represented as the integral following

a circle, using the substitution z = zr exp
(
iφ

)
, where zr is a real saddle point. Figure 4.2

shows values of the integrand for successive values of angle φ. Characteristic peaks occur

around φ= 0, which is when we pass precisely through the point zr in the complex plane.

It is also easy to see that the purely imaginary part does not matter in the integration

process since it gives an excellent approximation to zero. This approximation for the case

in Fig 4.2 is of order of 10−14.

Figure 4.2. Real, imaginary and absolute values of the integrandΞ
(
z,β

)/
zN+1 for successive values

of the angle φ for N = 100 particles in the condensate for temperature 5ħω/
kB , where ω= 200π.
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Unfortunately, the phase transition leading to the Bose-Einstein condensation does

not occur for one-dimensional harmonic traps. This transition appears in two- and

three-dimensional systems7. In this case, only the degeneration of states has to be consid-

ered, and the grand partition function for the three-dimensional trap reads

Ξ
(
z,β

)= ∞∏
k=0

[
1

1− z exp
[−βεk

]](
k +1

)(
k +2

)/
2

. (4.18)

Below we present results for the 3D condensate using relationships (4.15) and (4.16). We

see they are compatible with results obtained in literature [31, 46, 47, 49], which confirms

the effectiveness of the integral method.

Figure 4.3. Mean particle number and mean-square fluctuations of the Bose-Einstein condensate
composed of N = 1000 particles in the three-dimensional harmonic trap.

7 Notice that in classical approximation, when the temperature is much greater than the differences
between energy states, one may replace summation in mean particle number by integration. Then all
information about the system is derived from the so-called density of energy states [1]. In the case of a box,
the phase transition is possible only for 3D systems because g

(
E

)∼p
E and some macroscopic number of

particles occupying the ground state at a fixed temperature. Considering the 3D harmonic traps, we have
g
(
E

) ∼ E 2, meanwhile, for 2D ones, it is g
(
E

) ∼ E . Therefore, for both situations, the phase transition is
possible.
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5. Statistical properties of one-dimensional quantum

droplet model

In this chapter, we propose a simple phenomenological one-dimensional quantum

droplet model based on a well-known problem in quantum mechanics, i.e. the finite quan-

tum well. We propose theoretical assumptions of the model, that is solved later. Using

the energy spectrum and statistical tools derived in the previous chapter, we present the

numerical results for the width of a droplet at finite temperature.

5.1. Simple phenomenological quantum droplet model

Let us recall the equations derived in the previous sections. The stationary form of the

Lieb-Liniger Gross-Pitaevskii equation reads

µφ
(
x
)= [

− ħ2

2m

∂2

∂x2
+µLL

[
N

∣∣φ∣∣2
]]
φ

(
x
)− gddN

∫
d x ′ V σ

dd

(
x −x ′)∣∣φ(

x ′)∣∣2
φ

(
x
)
. (5.1)

As we mentioned before we may rewrite the above equation to the following simple form,

valid in the so-called analytical regime

µφ(x) =
[
− ħ2

2m

∂2

∂x2
+ ħ2π2

2m
N 2

∣∣φ(x)
∣∣4 − gddN

∣∣φ(x)
∣∣2

]
φ(x). (5.2)

The stationary solution of Eq. (5.2) tends to rectangular shape as we discussed in the

Section 3. Below we present another stationary solution, where the effect is even more

apparent. It turns out that we can assume the rectangular ansatz as an accurate approxi-

Figure 5.1. Stationary solution to the LLGPE in the quantum droplet analytical regime.

mation of the ground state [23]. One must consider that such a profile would have infinite
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kinetic energy because of the sharp jump of the density at the edges. Then spatial deriva-

tives related to the kinetic energy would tend to infinity. Nevertheless, comparing different

energies before the rectangular approximation was taken, proved that kinetic energy may

be neglected [23]. Regarding that, one may discard the kinetic energy from Eq. (5.2) and

adopt the solution as [23]

φ
(
x
)= 1p

W
rect

(
x
/

W
)

, (5.3)

where W is the quantum droplet width in the analytical regime, and the rect
(
x
/

W
)

func-

tion is defined as

rect
(
x
/

W
)=

0 for W
/

2 < ∣∣x∣∣<∞,

1 for
∣∣x∣∣≤W

/
2.

(5.4)

In order to find the best approximation of the ground state, one has to minimise the energy

functional of the system with respect to W . One obtains the formula as follows [23]

W = 2π2ħ2

3m

Nd

gdd
, (5.5)

which we have already introduced in Section 3. In turn, the chemical potential is given by

[23]

µ=− 3m

8π2ħ2
g 2

dd. (5.6)

Taking into account all our previous observations and rectangular ansatz of the ground

state, we want to propose a simple quantum droplet model using a one-dimensional

finite quantum well. Let us consider a one-dimensional closed system - quantum droplet

model and its environment, composed of particles (bosons) that can occupy well-defined

energy levels. These levels are: a ground state ε0 and excited states, i.e. bound states εB

and scattering states εS . At temperature T = 0, all particles occupy the same lowest state ε0.

With the temperature increase, these particles can move to excited states, i.e. to εB and εS

states. This model assumes that the quantum droplet is formed by particles located in the

ε0 and εB states. The ε0 state corresponds to a stationary droplet. The scattering states will

be used to model the evaporation of particles from the droplet. Meanwhile, the εB states

correspond to an excited droplet, e.g. perturbed by phonons. The model, as discussed later,

can be improved by accounting for the correct spectrum of an excited droplet, but here we

would like to study the processes of droplet evaporation only qualitatively. Therefore, we

start assuming that εB are the energy levels in the finite quantum well with a depth V0. The

states εS , on the other hand, will be the scattering states. The number of particles forming

a droplet Nd is a number of particles located in the ε0 and εB states. We introduce the

notation W ≡ 2a, where 2a is the width of a quantum well. Moreover, it is known that the

chemical potential of the droplet is given by Eq. (5.6), which limits the number of available

energy states. This means we can relate µ with the potential depth V0

V0 ≡
∣∣µ∣∣= 3m

8π2ħ2
g 2

dd, (5.7)
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whose value determines the number of available bound states.

In the first place, we determine the energy spectrum of such a model, and then, using

methods derived in Section 4, we will investigate the "droplet" evaporation.

5.2. Eigenenergies of the finite quantum well

Consider a one-dimensional quantum system in which a particle of mass m is located

in a box of finite potential depth V0 and width 2a. This box is surrounded by an infinite

potential V =∞ located at a distance ±L from the origin of the coordinate system, where

|L| ≫ |a|. The infinite potential models thus a fact that the system remains closed. This

situation is illustrated in Fig 5.2. The potential energy of a particle is given by the following

Figure 5.2. One-dimensional finite quantum well of depth V0 and width 2a, surrounded by an
infinite potential V .

formula

V
(
x
)=


0 for a < ∣∣x∣∣< L,

−V0 for
∣∣x∣∣< a,

∞ for
∣∣x∣∣> L,

(5.8)

where we assume that the value of the parameter V0 is positive, i.e. V0 > 0. Assuming the

energy of the particle E is negative, i.e. −V0 < E < 0, there should be only bound energy

states in the box, and their number should be finite. The particle must fulfil the stationary
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Schrödinger equation

∣∣x∣∣< a : − ħ2

2m

∂2

∂x2
ψII

(
x
)−V0ψII

(
x
)=−∣∣E ∣∣ψII

(
x
)
, (5.9)

−L < x <−a : − ħ2

2m

∂2

∂x2
ψI

(
x
)=−∣∣E ∣∣ψI

(
x
)
, (5.10)

a < x < L : − ħ2

2m

∂2

∂x2
ψIII

(
x
)=−∣∣E ∣∣ψIII

(
x
)
. (5.11)

The expression −∣∣E ∣∣ takes into account the fact that the energy of a particle is negative. In

addition, we introduce real and positive variables, κ and k such that

κ=
√

2m

ħ2

∣∣E ∣∣, k =
√

2m

ħ2

(
V0 −

∣∣E ∣∣). (5.12)

The wave function should: disappear at x =−L and x = L, be continuous and has continu-

ous derivatives at x =−a and x = a. This gives conditions

ψI
(−L

)=ψIII
(
L
)= 0, (5.13)

ψI
(−a

)=ψII
(−a

)
and ψII

(
a
)=ψIII

(
a
)
, (5.14)

∂

∂x
ψI

(
x
)∣∣∣∣

x=−a
= ∂

∂x
ψII

(
x
)∣∣∣∣

x=−a
and

∂

∂x
ψII

(
x
)∣∣∣∣

x=a
= ∂

∂x
ψIII

(
x
)∣∣∣∣

x=a
. (5.15)

Solving the problem above leads to conditions on even and odd bound energy states

a condition for even bound states : κ ctgh
[(

a −L
)
κ
]=−k tg

(
ka

)
, (5.16)

a condition for odd bound states : κ ctgh
[(

a −L
)
κ
]= k ctg

(
ka

)
. (5.17)

In a further step, one needs to analyse the allowed values of the parameters κ and k. For

this purpose, we introduce the dimensionless and positive variables ξ= ka and η= κa.

Thus we obtain the following relation

ξ2 +η2 = 2m

ħ2
V0a2. (5.18)

That is a circle equation that limits the available solutions from above. If we introduce

recently defined variables into equations (5.16) and (5.17), we obtain transcendental

functions of one variable (e.g., η) whose solutions determine energy states in the well.

These functions read

even : fB
(
η
)≡ η ctgh

[(
1− L

a

)
η

]
+

√
2m

ħ2
V0a2 −η2 tg

√
2m

ħ2
V0a2 −η2 = 0, (5.19)

odd : fB
(
η
)≡ η ctgh

[(
1− L

a

)
η

]
−

√
2m

ħ2
V0a2 −η2 ctg

√
2m

ħ2
V0a2 −η2 = 0. (5.20)
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The energies of each state are given by the following formula and stem from the relation

η= κa

εB ≡ εB
(
η, a

)=− ħ2η2

2ma2
, (5.21)

where η behaves like an iterator and represents successive solutions of the equations (5.19)

and (5.20). The number of solutions to these equations is finite, and it follows that the

number of bound states in the well is limited. Looking for solutions is therefore restricted

to the range η ∈ (
0,λ

)
, where λ is given by the expression below

λ≡λ(
V0, a

)=√
2m

ħ2
V0a2. (5.22)

We perform analogous considerations for scattering levels. In this case, the particle must

again satisfy a similar, though slightly different, Schrödinger equation

∣∣x∣∣< a : − ħ2

2m

∂2

∂x2
ψII

(
x
)−V0ψII

(
x
)= E ψII

(
x
)
, (5.23)

−L < x <−a : − ħ2

2m

∂2

∂x2
ψI

(
x
)= E ψI

(
x
)
, (5.24)

a < x < L : − ħ2

2m

∂2

∂x2
ψIII

(
x
)= E ψIII

(
x
)
. (5.25)

In this situation the energy of the particle is positive i.e. E > 0. As before, we introduce the

positive and real variables κ and k

κ=
√

2m

ħ2
E , k =

√
2m

ħ2

(
V0 +E

)
. (5.26)

The wave function ψ(x) must satisfy the same boundary conditions i.e. (5.13), (5.14) and

(5.15). In this way, we derive equations whose solutions describe the successive scattering

states

even : fS
(
η
)≡ η ctg

[(
1− L

a

)
η

]
+

√
2m

ħ2
V0a2 +η2 tg

√
2m

ħ2
V0a2 +η2 = 0, (5.27)

odd : fS
(
η
)≡ η ctg

[(
1− L

a

)
η

]
−

√
2m

ħ2
V0a2 +η2 ctg

√
2m

ħ2
V0a2 +η2 = 0. (5.28)

Energies of scattering states are given by the following expression

εS ≡ εS
(
η, a

)= ħ2η2

2ma2
. (5.29)

The scattering levels are not limited by any condition, so we are looking for solutions to

the equations (5.27) and (5.28) in the range η ∈ (
0,∞)

.
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Figure 5.3. Example placement of energy states, based on solutions to the equations (5.19), (5.20),
(5.27) and (5.28).

5.3. Evaporation of droplet – numerical results

The quantum well eigenenergies εB , εS , and the additional lowest-lying state ε0, per-

mit us to build particle statistics based on statistical ensembles, which allows studying

the mean particle number of each state and thus the width of the quantum droplet as

a function of temperature T . In order to do this, we use the formula (5.5). The number of

particles Nd which create a quantum droplet is the mean number of particles that occupy

the corresponding energy states of the finite quantum well. We can therefore write that Nd

is expressed as follows

Nd = 〈n0〉+〈nB 〉, (5.30)

where 〈n0〉 is the mean particle number located in the ground state and 〈nB 〉 is the mean

number of particles located in all bound states. Therefore, we determine W as

W = 2π2ħ2

3m

Nd

gdd
= 2π2ħ2

3m

〈n0〉+〈nB 〉
gdd

, (5.31)

using the integral formula (4.15)8 As the temperature T increases, the average occupation

of each energy state changes. If the temperature reaches a value for which some of the

particles go to the scattering states εS , the droplet width W and thus the energy spectrum

will change. This means that the so-called self-consistent calculation has to be applied.

8 Notice that we calculate only mean particle number in specific quantum well states. We do not
evaluate mean-square fluctuations because it turns out that the integral formula does not consider the
correlations between levels. That fluctuations formula correctly describes only one state, which is consistent
with results derived for BEC because we investigate only the ground state there. One cannot just add up
fluctuations for each state that create the droplet because the result is not physical. However, we may do this
for ordinary occupations.
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This calculus means that we determine the energy spectrum at a fixed temperature T and

then calculate the width W . Then, to stabilise the droplet at this temperature, we again

determine the energy spectrum and the width. We can name this process "thermalisation"

of the droplet. In the simulation, we assumed five steps of thermalisation9 and the total

width of the system is equal to 2L = 12 l . In addition, we shifted the entire energy spectrum

by the potential depth V0. Such an operation does not affect the physical results but

significantly simplifies the numerical calculations. Therefore, we suppose that ε0 = 0.

Moreover, we may use a real energy spectrum for droplets derived from the assumption

of a rectangular ansatz of its density profile. It turns out that the bound spectrum can be

represented as [23]

εk
B =

(
3

2π

)2 m

ħ2

g 2
ddk

Nd

√
1

3
+ k2

4N 2
d

, (5.32)

where k = 1,2,3, ... iterates the successive energy states. The number of available levels

is limited by the chemical potential µ, i.e. εkmax
B = ∣∣µ∣∣ [23], which is equivalent to the

parameter V0. As before, we take ε0 = 0 as the ground state, while for the scattering states

εS we propose the following expression

εk
S = ħ2

2m

(
πk

L

)2

+V0, (5.33)

where the variable k iterates successive scattering levels. In the following, we present the

results of quantum droplet width as a function of temperature based on the quantum well

and actual energy spectra.

Figure 5.4. Width of the quantum droplet as a function of temperature T , based on the finite
quantum well (left panel) and actual (right panel) spectrum. In both cases, the dipolar coupling
constant equals gdd = 1000.

In Fig. 5.4, we can see that the evaporation process is similar in both cases. Initially,

the width of the quantum droplet is constant. It is related to the assumption that the

9 This is an arbitrary value. During the simulation, we have seen that the droplet usually stabilises after
about 2-4 steps.
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5. Statistical properties of one-dimensional quantum droplet model

droplet is composed of particles located in bound states. Initially, the temperature is too

low, and there are no particles in the scattering states. However, the consistent increase of

temperature causes some particles to move to these states, and the droplet starts shrinking.

We also see that none of the droplets evaporates slower or faster. The processes are similar

for the same dipolar coupling constant, which is especially visible in the case of the actual

energy spectrum. One may see that the evaporation profiles for droplets built from the

finite quantum well spectrum are a little ragged. That is probably because the energy

spectrum in each step is calculated numerically. Moreover, the self-consistent calculation

perhaps cannot stabilise the droplet, and the number of energy states jumps between

different values, affecting the number of bound states and droplet width. For the actual

energy spectrum, we have the exact formula for eigenenergies. Thus, the profiles do not

have any jumps and are smooth even at high temperatures.

Figure 5.5. Width of the quantum droplet as a function of temperature T , based on the finite
quantum well (left panel) and actual (right panel) spectrum. In both cases, the total number of
particles in the system equals N = 200.

Figure 5.6. The same case as in Fig. 5.5, but in different units. TMAX denotes the maximal tempera-
ture used during simulations.

In Fig. 5.5 we see the evaporation profiles are highly similar to the previous cases,

but there are different dipolar coupling constants, that modify the chemical potential µ.
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5. Statistical properties of one-dimensional quantum droplet model

Therefore, it is good to present profiles in other units. In Fig. 5.6 one can see the droplet

shrinks faster for lower values of dipolar coupling constant. That could mean as the dipole

interaction becomes stronger, the droplet is less eager to evaporate. Such a situation seems

possible. Notice that the dipolar interaction is attractive. Therefore, the greater the dipolar

coupling constant, the stronger particles attract each other. That means one has to use

more energy to separate particles from the droplet, which is related to providing higher

temperatures. From the perspective of the finite quantum well, it means there are more

bound states, by which one has to provide a higher temperature to allow particles to

escape to scattering states.

To sum up, we see that the proposed quantum droplet model in the form of a finite

quantum well has a similar evaporation profile to the actual spectrum found in [23]. We

believe that the proposed model correctly describes one-dimensional quantum droplet

evaporation in the analytical regime.
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6. Summary

This thesis has aimed to investigate several properties of one-dimensional quantum

droplets. These new ultra-dilute forms could arise in both Bose-Bose mixtures, predicted

by D. Petrov [13] and in one-component Bose systems with a substantial magnetic moment,

as predicted by A. Pelster [50] and observed by T. Pfau’s group [12].

In order to study quantum droplets, we used the Lieb-Liniger Gross-Pitaevskii equa-

tion (LLGPE) extended by the dipolar interaction term [24]. To better understand the

LLGPE, in Section 2 we initially recalled the basics of many-body quantum mechanics

for bosonic systems. We derived the well-known Gross-Pitaevskii equation (GPE) for

weak, short-range interactions, using the second quantisation formalism and mean-field

approximation theory [1, 31]. The latter equation has gained its popularity foremost for

an approximate description of the weakly-interacting Bose system, including low-energy

excitations and solitons [33]. However, even in a weakly-interacting regime, the GPE does

not describe such exciting phenomena as quantum depletion [34, 35]. During the thesis,

we focused on strongly interacting particles, for which the GPE does not provide the

correct description. To derive the appropriate equation, which respects such a regime,

we used the exact solution found by E. Lieb [29, 30]. That model allows the investigation

of homogeneous one-dimensional gas for any strength of short-range interaction, in the

effective form such as V
(
x − x ′)= gδ

(
x − x ′). However, solutions from the LL model are

not handy and are usually studied only for a small number of particles (of the order of

several). Therefore, we introduced the appropriate equation with non-linear Lieb-Liniger

chemical potential µLL, using the hydrodynamic approach [25, 26]. Such an equation gives

reliable results for strong interactions [41]. In [24] the equation was extended to the gas

with strong short-range repulsion and weak dipolar attraction to show the existence of

one-dimensional quantum dipolar droplets.

Subsequently, in Section 3 we focused on the stationary form of the LLGPE. That

equation offers several types of solutions. Primarily there are bright solitons [41] and quan-

tum droplets [23, 24]. There is also the so-called analytical regime of quantum droplets

(fermionised quantum droplets) where the analytical solution is known [23]. That regime

corresponds to weak and short-range effective dipolar interaction with σ→ 0 and strong

short-range interaction g →∞. In such a regime the stationary LLGPE take a significantly

simpler form. Our objective was to investigate what happens with the fermionised quan-

tum droplet in real-time in the case when we perturbed its stationary solution. During

simulations, it turned out that when we prepared a system with additional energy in the

form of noise, the dynamic of a perturbed quantum droplet is highly complex. Several

particles leave a droplet, and the droplet first shrinks and then it stabilises. We conducted

many simulations with perturbed systems, adding energy in different ways, i.e. by deter-

ministic and random functions. We noted that the result depends only on the amount of

the added energy but not the method of adding the perturbations. Taking into account our

observations, in the subsequent section, we proposed a simple phenomenological model
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6. Summary

of a quantum droplet, which allowed us to study its statistical properties. However, before

that, we presented the basics of statistical ensembles, which provided us with appropriate

numerical tools to investigate the evaporation of droplets.

Thus, in Section 4, we thoroughly analysed the statistical ensembles to find a proper

description of the mean particle number in any quantum state [45]. In order to do so, we

used the canonical ensemble that adequately describes systems with a fixed number of

particles [45]. Unfortunately, the explicit representation of the partition function in the

canonical ensemble is hampered by the Kronecker delta, which ensures a constant number

of particles in the system. Therefore, we have used the numerical method of representing

the partition function as a contour integral from the grand partition function in the

complex plane [46, 47]. Having the formula to Z
(
N ,β

)
, we presented integral formulas

that allowed us to determine the mean particle number of the individual energy states

in the canonical ensemble. In addition, we considered an equation for the so-called

saddle point, used in efficient calculation of the contour integral [46]. For illustration, we

presented a short description of the Bose-Einstein condensate and well-studied results of

such a system [31, 32].

Finally, we proposed a phenomenological one-dimensional quantum droplet model

in the last Section. In that section, we again recalled the stationary form of the LLGPE. The

LLGPE solutions we investigated in the analytical regime resemble rectangular shapes with

reasonable accuracy. Moreover, the kinetic energy of these systems is minimal compared

to the interaction energies. Accordingly, one may neglect the kinetic term and take the

solution as the rectangular ansatz [23]. Making such an assumption results in the wave

function being described by only one parameter - the quantum droplet width W , which

in turn, in the adopted regime, depends only on the particle number Nd and dipolar

coupling constant gdd. Because of our observations and rectangular ansatz with the W

parameter, we built the quantum droplet model based on a finite quantum well. The finite

quantum well is a simple problem in quantum mechanics, but despite its simplicity, one

can only find its eigenenergies numerically. Nevertheless, having the energy spectrum

of it and tools derived in Section 4, we could investigate the droplet’s evaporation under

heating. We compared these results with results obtained from the exact energy spectrum

of a quantum droplet in the analytical regime. These results were very similar, but due

to the numerical determination of the quantum well spectrum, the droplet width profile

was a little ragged. We observe that the larger the dipolar coupling constant increase, the

slower is droplet evaporation. From the perspective of quantum well, it is related to a larger

number of bound states, by which the particles escape to the scattering state at a higher

temperature.

The thesis leads to several research problems which we did not undertake. Primar-

ily one may compare the results obtained from the quantum droplet model and direct

from the LLGPE. For this purpose, one must conduct many simulations with different

added energies to the system. These results are obtained in the microcanonical ensemble.

Therefore, one needs to transfer these to the canonical one and ensure the same boundary
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6. Summary

conditions in both methods earlier. The second problem is determining the mean-square

fluctuations of particles in the droplet model. The equation we provided is correct only

for investigating individual states. Thereby it gives excellent results for the ground state

of typical BEC systems. However, that formula does not take into account multilevel

correlations. Therefore, in the case of the quantum droplet model, which is composed

of particles located in different quantum states, simply adding up the fluctuations for

individual levels is not physical. Another problem we did not discuss is that one may

continue with the numerical calculus of the partition function in canonical ensemble and

the saddle point, which finally should lead to the Gaussian integral. It should allow for to

investigation of larger systems more efficiently.

46



A. Accurate approximation form of eLL(γ)

Calculation of the Lieb-Liniger chemical potential requires knowing embedded func-

tion eLL
(
γ
)
. Fortunately, this function has an accurate and comprehensive polynomial

form derived as a numerical approximation [36]. For weak interactions γ< 1, we have

eLL
(
γ
)≈ γ− 4

3π
γ3/2 +

[
1

6
− 1

π2

]
γ2 −0.0016γ5/2 +O

(
γ3) . (A.1)

In the region of intermediate forces 1 ≤ γ< 15, approximation reads

eLL
(
γ
)≈ γ− 4

3π
γ3/2 +

[
1

6
− 1

π2

]
γ2 −0.002005γ5/2 +0.000419γ3−

0.000284γ7/2 +0.000031γ4.
(A.2)

Whereas for strong interactions γ≥ 15, as follows

eLL
(
γ
)≈ π2

3

[
1− 4

γ
+ 12

γ2
− 10.9448

γ3
− 130.552

γ4
+ 804.13

γ5
− 910.345

γ6
− 15423.8

γ7
+

100559.0

γ8
− 67110.5

γ9
− 2.64681 ·106

γ10
+ 1.55627 ·107

γ11
+ 4.69185 ·106

γ12
−

5.35057 ·108

γ13
+ 2.6096 ·109

γ14
+ 4.84076 ·109

γ15
− 1.16548 ·1011

γ16
+ 4.35667 ·1011

γ17
+

1.93421 ·1012

γ18
− 2.60894 ·1013

γ19
+ 6.51416 ·1013

γ20
+O

(
1

γ21

)]
.

(A.3)
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B. Hydrodynamical approach for LLGPE

In order to provide hydrodynamical approach we insert complex function (2.19) with

its condition to the LLGPE (2.20). During the proof we will omit the arguments of ρ(x, t ),

ν(x, t ), ϕ(x, t ) and φ(x, t ) for clarity of calculations, having their dependence of position

and time in mind. Let us recollect these relationships

iħ ∂

∂t
φ=− ħ2

2m

∂2

∂x2
φ+µLL

[
N

∣∣φ∣∣2
]
φ, φ=

√
ρ

N
e iϕ,

ħ
m

∂ϕ

∂x
= ν. (B.1)

Therefore, we have

iħ ∂

∂t

√
ρ

N
e iϕ+ ħ2

2m

∂2

∂x2

√
ρ

N
e iϕ−µLL

[
ρ
]√

ρ

N
e iϕ = 0. (B.2)

Now, we calculate appropriate derivatives, next we put these forms to (B.2) and simplify

the constants. In this way, we get equation with real and imaginary terms

R

[
−µLL[ρ]−ħ∂ϕ

∂t
− ħ2

2m

(
∂ϕ

∂x

)2

− ħ2

8mρ2

(
∂ρ

∂x

)2

+ ħ2

4mρ

∂2ρ

∂x2

]
+

iI

[
− ħ

2ρ

∂ρ

∂t
− ħ2

2mρ

∂ρ

∂x

∂ϕ

∂x
− ħ2

2m

∂2ϕ

∂x2

]
= 0.

(B.3)

Let us consider the imaginary part. We multiply this expression by
(−2mρ

/ħ)
and get

m
∂ρ

∂t
+ħ∂ρ

∂x

∂ϕ

∂x
+ħρ∂

2ϕ

∂x2
= 0. (B.4)

Next, we use the relation that ∂ϕ
/
∂x = mν

/ħ
∂ρ

∂t
+ν∂ρ

∂x
+ρ∂ν

∂x
= 0. (B.5)

In this way, we see that we obtained the continuity equation

∂

∂t
ρ+ ∂

∂x

(
ρν

)= 0. (B.6)

It remains to consider the real part. Let us take into account only its first three terms and

compare these to zero

−µLL
[
ρ
]−ħ∂ϕ

∂t
− ħ2

2m

(
∂ϕ

∂x

)2

= 0. (B.7)

Now we act on this equation with the differentiate operator over x

ħ ∂

∂t

∂ϕ

∂x
+ ħ2

2m

∂

∂x

(
∂ϕ

∂x

)2

=− ∂

∂x
µLL

[
ρ
]

. (B.8)
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B. Hydrodynamical approach for LLGPE

We again use the relationship that ∂ϕ
/
∂x = mν

/ħ and we obtain

∂

∂t
ν+ν ∂

∂x
ν=− 1

m

∂

∂x
µLL

[
ρ
]

, (B.9)

which is the Euler equation. Remains the question, what are the other two terms in the

real part of (B.3). It turns out it is the so-called quantum pressure which may be neglected

that we mentioned in the main part of the thesis. That pressure is defined in the following

way [26]

Q =− ħ2

2m

1p
ρ

∂2pρ
∂x2

. (B.10)

Calculate the second derivative gives expression as follows

− ħ2

2m

1p
ρ

∂2pρ
∂x2

= ħ2

8mρ2

(
∂ρ

∂x

)2

− ħ2

4mρ

∂2ρ

∂x2
, (B.11)

which are the same parts as in (B.3).
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C. Derivation of 〈n j 〉 and σ2
〈n j 〉

We can express the mean particle number in the state j by an appropriate derivative

from the partition function [45]

〈n j 〉 =− 1

β

∂

∂ε j

ln
[

Z
(
N ,β

)]=− 1

β

1

Z
(
N ,β

) ∂

∂ε j

Z
(
N ,β

)
. (C.1)

Now, in place of the differentiation of partition function, we insert its integral representa-

tion

〈n j 〉 =− 1

β

1

Z
(
N ,β

) ∂

∂ε j

∮
C

Ξ
(
z,β

)
zN+1

d z

2πi
. (C.2)

In place of the grand partition function, we insert its analytical formula and move the

differentiation under the integral

〈n j 〉 =− 1

β

1

Z
(
N ,β

) ∮
C

d z

2πi

1

zN+1

∂

∂ε j

∞∏
i=0

1

1− ze−βεi
. (C.3)

In general, the derivative of a product is defined as

d

d x

k∏
i=0

fi (x) =
(

k∏
i=0

fi (x)

)(
k∑

i=0

f ′
i (x)

fi (x)

)
. (C.4)

In our case, we differentiate with respect to only one term, i.e. ε j . This means that from

the whole sum, only the derivative of the element containing ε j , divided by this element,

will remain. Thus, we obtain

〈n j 〉 =− 1

β

1

Z
(
N ,β

) ∮
C

d z

2πi

Ξ
(
z,β

)
zN+1

−βze−βε j(
1− ze−βε j

)2

(
1− ze−βε j

)
. (C.5)

Finally, the formula for 〈n j 〉 reduces to the following form

〈n j 〉 = 1

Z
(
N ,β

) ∮
C

ze−βε j

1− ze−βε j

Ξ
(
z,β

)
zN+1

d z

2πi
. (C.6)

The mean-square fluctuations σ2
〈n j 〉 can be determined by doing differentiation twice [45]

σ2
〈n j 〉 =

1

β2

∂

∂ε j

[
∂

∂ε j

ln
[

Z
(
N ,β

)]]= 1

β2

∂

∂ε j

[
1

Z
(
N ,β

) ∂

∂ε j

Z
(
N ,β

)]

= 1

β2

[
−

(
1

Z
(
N ,β

))2 ∂

∂ε j

Z
(
N ,β

) ∂

∂ε j

Z
(
N ,β

)+ 1

Z
(
N ,β

) ∂2

∂ε2
j

Z
(
N ,β

)]
.

(C.7)

50



C. Derivation of 〈n j 〉 and σ2
〈n j 〉

It is easy to observe that the first term is the square of the mean particle number

σ2
〈n j 〉 =−〈n j 〉2 + 1

β2

1

Z
(
N ,β

) ∂2

∂ε2
j

Z
(
N ,β

)
. (C.8)

This leaves the second term to be determined. During the calculation, we can omit the

constants in order to simplify the notation

∂2

∂ε2
j

Z
(
N ,β

)= ∂

∂ε j

[
∂

∂ε j

Z
(
N ,β

)]= ∂

∂ε j

[
∂

∂ε j

∮
C

Ξ
(
z,β

)
zN+1

d z

2πi

]
. (C.9)

We use the previously determined expression for the derivative in parentheses

∂2

∂ε2
j

Z
(
N ,β

)= ∂

∂ε j

[∮
C

−βze−βε j

1− ze−βε j

Ξ
(
z,β

)
zN+1

d z

2πi

]

=
∮

C

d z

2πi

1

zN+1

∂

∂ε j

(−βze−βε j

1− ze−βε j
Ξ

(
z,β

))
.

(C.10)

The derivative under the integral is equal to

β2
(
ze−βε j

)2(
1− ze−βε j

)2Ξ
(
z,β

)+ β2ze−βε j

1− ze−βε j
Ξ

(
z,β

)− βze−βε j

1− ze−βε j

∂

∂ε j

Ξ
(
z,β

)
. (C.11)

When the last expression is differentiated, it will be equal to the first one, so in total, these

parts will add up. The expression in the middle is, in turn, equivalent to the mean particle

number 〈n j 〉. If we put everything together keeping in mind the constants, we get the

formula for the fluctuations of the j -th state

σ2
〈n j 〉 =

2

Z
(
N ,β

) ∮
C

(
ze−βε j

1− ze−βε j

)2
Ξ

(
z,β

)
zN+1

d z

2πi
+〈n j 〉−〈n j 〉2. (C.12)
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D. Software implementation

The code implementation of the Lieb-Liniger Gross-Pitaevskii equation, imaginary-time

and real-time evolution methods is available at https://gitlab.com/jakkop/mudge.

I did not contribute to the code implementation in any way. I only used it during the thesis

by modifying the added noise and parameters.

The code implementation of the droplet model and integral path method is available

at https://github.com/mateuszk098/Droplet-Model. It is entirely my work.
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