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Summary

One-dimensional bosonic gas with attractive dipolar and strong short-range repulsive inter-
actions features the so-called quantum droplets. Quantum droplets are ultradilute analogues
of classical droplets that are stabilized by quantum fluctuations. In this thesis, we propose a
simple hydrodynamic theory of one-dimensional bosonic dipolar gas. The introduced theory
is build with the information taken from the integrable Lieb-Liniger (LL) model and is formu-
lated in a form of mean-field equation called here the Lieb-Liniger-Gross-Pitaevskii (LLGP)
equation. We classify the phases visible in our model and derive analytical approximations
valid in certain regimes. The main goal of the thesis is to study elementary excitations. In the
absence of dipolar interactions, we directly compare predicitions of our model with the exact
results from the LL model, obtaining good agreement. After these initial tests, we move to
the case of excitations displayed by a quantum droplet. We obtain shapes of collective modes
and excitation energies as a solutions of Bogoliubov-de Gennes equations. These numerical
results are supplemented by analytical approximations.
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Title of the thesis in Polish language

Wzbudzenia elementarne jednowymiarowych, bozonowych kropli kwantowych z oddziaływa-
niami dipolowymi.
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Chapter 1

Introduction

The subject of the thesis is embedded in a context of research related to ultracold atomic
physics. Experimental advances of the recent decades opened a way to explore properties
of gases at very low temperatures, where the atoms move so slowly that their behavior is
essentially quantum. Due to the very low densities of the atomic clouds, it is possible to reach
such regime avoiding crystallization. The resulting phase of matter is called quantum gas.
Nowadays, such gases are routinely prepared in the laboratories and astonishing effects such
as the Bose-Einstein condensation [1, 2] or interference of matter waves [3], are observed and
studied by the experimentalists.

The field of ultracold physics was born with the papers of Bose and Einstein concern-
ing thermodynamical properties of indistinguishable particles. Such particles may be divided
into two groups: bosons and fermions. An arbitrary number of bosons can occupy the same
quantum state as opposed to fermions for which only one particle per quantum state is al-
lowed. Einstein predicted that a quantum gas consisting of bosonic particles undergoes a
phase transition. Below the critical temperature, a macroscopic number of atoms occupy
the same quantum state, forming a condensate - a large matter wave that can interfere with
other condensates. These predictions motivated experimentalists to reach cool a gas to lower
and lower temperatures. Several important experimental techniques concerning cooling and
trapping were developed for that purpose. The Nobel prize for some of these inventions were
awarded to S. Chu, C. Cohen-Tannoudji and W. Philips in 1997. Four years later, another No-
bel prize was given to W. Ketterle, E. Cornell and C. Wieman for the experimental realization
of Bose-Einstein condensate [1, 2].

This discovery was a milestone that accelerated both experimental and theoretical studies
of quantum gases. Since that time, a plethora of different experiments probed the quantum
behavior of ultracold atoms. Moreover, the ultracold gas turned out to be an extremely
controllable system. Physicists are able to manipulate interparticle interactions and trap the
atoms into potentials of a variety of different geometries. Importantly, thanks to strongly
anisotropic confinement, also physics in lower dimensionalities is explored in the laboratories.
For example, one-dimensional geometry is effectively obtained when the energy related to the
first excited state of a transversal confinement is much bigger than average energies associated
with longitudinal degrees of freedom. It is no surprise, that with such a controlable systems
at hand, that new, exotic effects are still being discovered.

So it happened in 2015, when the group of T. Pfau discovered a new state of ultracold
matter - a dilute quantum droplet [4]. Typically, a quantum gas in its ground state is charac-
terized by an uniform density (with some deviations from that caused by the trapping). On
the other hand, quantum droplet phase corresponds to the situation, where the gas breaks
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the translational symmetry in its ground state and forms self-bound finite-size droplets. The
experiment [4] was performed using a bosonic quantum gas with interactions characterized
by repulsive short-range character and a long-range dipolar attraction. Competition between
these two forces drives the formation of quantum droplets. A similar type of interaction is
also responsible for the stability of classical droplets, although in the quantum case we deal
with much lower densities and temperatures.

Around the same time, a theoretical paper by D. Petrov [5] predicted existence of similar
ultracold droplets in a different setup involving a mixture of two Bose gases. This time how-
ever, the appearence of droplets required a fine-tuning of intra- and interspecies interactions
between bosons. Relevant conditions may be understood via energy considerations. In the
proposed setup, intracomponent interactions are repulsive, whereas intercomponent interac-
tions are attractive. In such case energy of the uniform gas may be written, using the simplest
approximation known as the mean-field approximation, as E = 1

2δgn
2 with δg < 0 where n is

the density of atoms. Therefore, to minimize the energy, the gas should shrink to a point to
maximize the local density. Such behaviour is indeed observed experimentally for large |δg|.
Unexpectedly, the situation changes, when the term δg is made very small, for instance by
proper tuning of inter- and intra-component couplings. In such a case, Petrov showed that
also higher order (beyond mean-field) term in the gas density n has to be taken into account

E =
1

2
δgn2 + CLHYn

5/2. (1.1)

The paper [5] points out situation where simultaneously δg < 0 is small and CLHY > 0.
The beyond mean-field term is called Lee-Huang-Yang correction [6] and stems from energy
associated with quantum fluctuations. Crucially, the energy (1.1) as a function of density
displays a local minimum for a finite value of density. It means that it is energetically favorable
to form a state with that specific value of the density. Consecutive studies shown that this
state is a new phase of matter, called a quantum droplet. Droplets in two-component Bose
gases predicted by Petrov were realized in the experiment in 2018 [7].

In general, one expects quantum droplets in any case, where the energy of the homogenous
gas consists of two competing terms that depend in a different way on the density, guaranteeing
local minimum for finite density. This may be the case also in setups involving different
interactions and lower dimensions [8, 9, 10]. In particular, such form of the energy is visible
in one-dimensional, strongly interacting dipolar Bose gas that is studied in this thesis. The
paper [11] shown that quantum droplets should exist in the regime of strong, contact repulsion
and weak, dipolar attraction. In this case, the energy coming from very strong short range
interaction is expressed by E ∼ n4, instead of Econ ∼ n2 valid for weak interactions. On the
other hand, attractive and weak dipolar interactions lead to energy scaling with density as
Edip ∼ n2. In the presence of both types of interactions, the total energy given by Econ+Edip,
posses a local minimum corresponding to a droplet density.

The thesis is solely dedicated to the one-dimensional dipolar gas featuring droplets in-
troduced in [11]. We introduce a slightly more accurate version of the effective mean-field
equation and extend the analysis of the phase diagram with the droplet phase. However, the
main goal of the thesis is to study elementary excitations exhibited by the quantum droplets.
In other words, we analyze the response of a droplet to small perturbation by identifying
shapes of the elementary modes and associated excitation energies. This is done by solution
of so-called Bogoliubov-de Gennes (BdG) equations that give modes and excitation energies.
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Structure of the thesis

In Chapter 2 we present a brief introduction to the mean-field description of repulsive Bose
gases. We start with a derivation and discussion of a well-known Gross-Pitaevskii (GP)
equation suitable for weakly interacting and stable gas. This is followed by introduction of
hydrodynamical equations constructed with the local energy density taken from the Lieb-
Liniger (LL) model. The proposed equations are aimed at the regime of strong interactions
and are benchmarked with the exact results for elementary excitations known in the LL model.
In Chapter 3 we discuss dipolar interactions in 1D and propose an effective mean-field equation
describing gas with strong contact repulsion and long-range dipolar attraction. Such equation
may be seen as an extension of the approach introduced and benchmarked in the Chpater 2.
We then identify different phases found in the stationary solution of the equation. Among
them, we thoroughly describe solutions corresponding to quantum droplets in different regimes
of the interactions. Finally, we move to the analysis of elementary excitations in Chapter
4. We solve BdG equations both numerically and analytically characterizing excitations in
different regimes. A summary of the obtained results is presented in the last chapter.
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Chapter 2

Effective descriptions of a repulsive
Bose gas

Throughout this work we deal with a system of N cold bosons confined to 1D geometry. We
assume periodic boundary conditions, applicable for instance to a system of atoms placed on
a ring of length L. The Hamiltonian governing system of particles interacting via interaction
potential V (x− x′) takes the following form

H = − ~2

2m

N∑
j=1

∂2xi +
∑
i<j

V (xi − xj), (2.1)

where m denotes mass of the atoms. Diagonalization of such a Hamiltonian when N is large
and V 6= 0 is possible only for a couple of models for which there exist exact solutions.
Arguably the most important one is the LL model [12, 13] of bosons interacting via a contact
potential V (x−x′) = gδ(x−x′), where g is the coupling constant. However, even in the case of
the LL model, the number of involved degrees of freedom is very large. As a result, it is difficult
to extract physical information due to the complexity of the many-body eigenstates. Hence,
one is forced to replace analytical approach with an effective description of a quantum gas that
focuses on some particular observables and regimes of parameters. Such approach inherently
leads to a loss of some information about the system (such as the interparticle correlations).
Nevertheless, it sets up a framework, in which calculation of interesting properties of the
system lies within the range of numerical and analytical methods.

In this chapter, we present two classical field theories for interacting bosons. We start
with a short review of a well-known GP equation [14]. We derive it, paying attention to the
range of applicability of the approximation. In the next step, we present a theory build on the
hydrodynamic approach that aims to describe Bose gas with an arbitrarily strong interactions.
We discuss differences with GP equation and present benchmarks with exact solutions from
the LL model.

2.1. Gross-Pitaevskii equation

The most widely used approach to study cold Bose gases is the mean-field approximation.
The range of validity of this method is restricted to weak interparticle interactions and to
low-energy regime (namely, close to the ground state). It heavily relies on the observation,
that in the case of an ideal Bose gas at T = 0, all the atoms occupy the same single-particle
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quantum state. Therefore, the many-body wave function is a product

Ψideal
GS (x1, . . . , xN ) =

N∏
j=1

φGS(xj). (2.2)

Let us now depart from the trivial example of ideal gas and move to the regime of weak
interparticle interactions. The mean-field approximation assumes that the factual ground
state remains in the product form. The effect of interactions is visible only in the modified
form of the single particle orbital φGS(x)→ φ(x). However, at this point we do not know the
specific form of φ(x), which is determined it in the following way. We calculate the expectation
value of the Hamiltonian (2.1) on the product state build with an unknown function φ(x).
Such a quantity may be interpreted as an energy functional of a field φ(x)

E[φ] := −N ~2

2m

∫
dxφ∗(x)∂2xφ(x) +

N(N − 1)

2

∫
dxdx′φ∗(x)φ∗(x′)V (x− x′))φ(x′)φ(x).

(2.3)
We demand that the optimal orbital φ(x) minimizes the functional (2.3). This is equivalent
to the standard extremal condition δE

δφ∗ = 0 supplemented with the normalization constraint∫
dx|φ(x)|2 = 1. Such a constraint is properly taken into account by an introduction of a

Lagrange multiplier µ. Explicitly, minimization condition reads

µφ(x) = − ~2

2m
∂2xφ(x) + (N − 1)

∫
dx′V (x− x′)|φ(x′)|2φ(x). (2.4)

The is the stationary GP equation, which is routinely solved for different interaction potentials
V (x−x′) using so-called imaginary time evolution (ITE) method (see Appendix A for details).
The solution also gives µ which is referred to as the chemical potential.

Complementary to the stationary equation, we may consider a dynamical situation, where
the orbital φ(x, t) depends on time t. We still assume the many body wave function remains
to be a product state during the evolution, limiting ourselves to low-energy dynamics. The
time-dependent version of GP equation reads

i~∂tφ(x, t) = − ~2

2m
∂2xφ(x, t) + (N − 1)

∫
dx′V (x− x′)|φ(x′, t)|2φ(x, t). (2.5)

GP equation proved to be an extremely successful approach to weakly interacting bosons, not
only in 1D, but also in two- and three-dimensional systems. It provides correct description of
a variety of phenomena such as solitons or low-energy excitations [15].

However, in this thesis we want to deal with strongly interacting systems, for which product
ansatz must fail, as it neglects interparticle correlations that are inevitable for strong repulsion.
At the same time, we aim for a relatively simple theory that captures at least some of the
relevant properties of the system. Such a theory is derived in the remaining part of the present
chapter.

2.2. Hydrodynamic theory for the Bose gas with arbitrarily strong
interactions

At this point we specify the form of interparticle potential to be V (x−x′) = gδ(x−x′), g > 0.
As indicated earlier, such a system with contact interactions is exactly solvable and the
solutions were provided by Lieb and Liniger in 1963 [12, 13]. In the thermodynamic limit
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given by the conditions N/L = const, N, L → ∞ the energy of the ground state may be
written as [13]

E0[N,L] =
~2

2m

N3

L2
eLL(γ) (2.6)

with the important parameter γ = m
~2
gL
N . The function eLL(γ) is given by a system of integral

equations, however it can be accurately approximated by known and simple functions of γ (see
Appendix B). For weak interactions, when γ � 1, we have eLL(γ) ≈ γ, whereas for γ →∞ we
recover the ground state energy of the Tonks-Girardeau gas [16] of infinitely repulsive bosons
with eLL(γ) → π2

3 . With the equation of state (2.6) at hand, we may calculate the pressure
and the chemical potential in the following way

PLL[N/L] = −∂E0[N,L]

∂L
=

~2

2m

N3

L3

(
2eLL (γ)− γe′LL (γ)

)
, (2.7a)

µLL[N/L] =
∂E0[N,L]

∂N
=

~2

2m

N2

L2

(
3eLL (γ)− γe′LL(γ)

)
. (2.7b)

The energy given by formula (2.6) is a result of an exact calculation, therefore even in the
strong repulsion limit it properly accounts for interparticle correlations. The same is true for
the pressure and the chemical potential. The precious informations contained in the function
eLL(γ) will be a crucial building block used to construct a hydrodynamic theory of a gas with
interactions of arbitrary strength. In the following derivation, we take another approach and
refer to hydrodynamic equations, in contrast to the GP equation.

Instead of using a wave function, we aim to characterize our gas with two classical fields
ρ(x) and v(x) as in the classical theory of continous media. The first one corresponds to the
local density of the atomic cloud, whereas the other is the velocity of a collective motion of
the particles. The continuity equation reads

∂tρ+ ∂x(ρv) = 0, (2.8)

while the Euler equation has the following form

∂tv + v∂xv =
1

mρ
∂xP, (2.9)

where P is the pressure at the position x. It is worthwhile to recall some basic assumptions
of the hydrodynamics. The system is divided into small parts of length dx, which are much
smaller than the system size L but at the same time are much larger than the interparticle
distances. Moreover, local equilibrium hypothesis assumes that equilibrium thermodynamics
holds for individual parts with size dx. Having that scale hierarchy in mind, we approximate
the energy of an element with energy density given by (2.6). Moreover, from the local equi-
librium hypothesis we assume that the pressure inside the element is given by the formula
(2.7a). Using the identity 1

ρ∂xPLL = −∂xµLL we bring the Euler equation to the form

∂tv + v∂xv = − 1

m
∂xµLL. (2.10)

Next, we replace the two real fields v(x) and ρ(x) with a single complex field

φ(x) =
√
ρ/Neiϕ (2.11)

with ~ ∂xϕ = mv. Then, the hydrodynamical equations discussed above may be combined
into

i~
∂

∂t
φ = − ~2

2m

∂2φ

∂x2
+ µLL

[
N |φ|2

]
φ, (2.12)
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with

µLL
[
N |φ|2

]
=

~2

2m
N2|φ|4

(
3eLL

(
κ

N |φ|2

)
− κ

N |φ|2
e′LL

(
κ

N |φ|2

))
(2.13)

where κ := gm
~2 . The equation (2.12) is called the Lieb-Liniger Gross-Pitaevskii (LLGP)

equation and will be our main tool to deal with strongly repulsive bosons on the mean-field
level. It is important to note, that we neglected so-called quantum pressure term as we
went from the hydrodynamical equations to (2.12). It was pointed out in [17], that this is
justified as long as we consider slowly-varying density profiles. In this thesis, we focus on
long-wavelength excitations fulfilling that assumption.

Let us emphasize that the LLGP equation was studied before in various contexts and
appeared under different names [18, 19]. The g → ∞ limit version was introduced by
Kolomeisky [20] and was later criticized by Girardeau and Wright [21] for incorrect description
of dynamics involving rapidly-varying density profiles. On the other hand, the full equation
involving function eLL(γ) was used for the descrpition of shock waves [17].

One should interpret φ(x) cautiously. From our construction we see, that a priori it
has nothing to do with a wave function. On the other hand, equation (2.12) resembles GP
equation. Indeed, for contact interactions GP equation takes the form

i~∂tφ(x, t) = − ~2

2m
∂2xφ(x, t) + g(N − 1)|φ(x, t)|2φ(x, t). (2.14)

If we consider limit of small interactions, then the function eLL(γ) may be approximated
by eLL(γ) ≈ γ. Applying this approximation to (2.12), together with the condition of large
particle number N ≈ N−1 we recover the GP equation. It means that for a weakly interacting
gas, we actually can interpret φ(x) as a wave function, having in mind the derivation of GP
equation. Importantly, this is certainly not the case in the regime of strong repulsion, where
φ(x) should be interpreted as an auxiliary field, conveniently representing hydrodynamic
quantities parametrizing our system.

For further analysis it is useful to note that the equation (2.12) may be derived in a
different way, namely using a variational treatment of the energy functional

ELLGP[φ] =
N~2

2m

∫
dx
[ ∣∣∣∣dφdx

∣∣∣∣2 +N2|φ|6eLL
(

κ

N |φ|2

)]
. (2.15)

It is quite natural to ask what is the purpose for constructing an effective description of inte-
grable model, for which almost everything is known. Contrary to the Bethe Ansatz techniques
that provide a solution to the Lieb-Liniger model, hydrodynamic approach is also capable of
describing gas in confined geometries and in the case of non-contact interactions. In the next
chapter, we will extend interactions in our model by adding attractive, dipolar part.

Let us remind that the ultimate goal of this work is to describe the low-energy excitations
of quantum droplets described with the LLGP equation further extended by the dipolar
interactions. In order to understand if our approach is capable of doing that, we study
elementary excitations displayed by purely repulsive gas calculated from our approach and
compare to exact results from the LL model. This will give us some intuition whether the
seemingly crude hydrodynamic approximation can be used to correctly describe low-energy
modes of quantum droplets characterized by strong interparticle interactions.

2.2.1. Elementary excitations

We wish to study response of a homogenous gas with φ0(x) = 1√
L

to some small initial
perturbation. We will characterize the response by identifying collective modes and excitation
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energies. Collective modes are understood in the same way as the modes in classical model
systems such as chains of oscillators. When the system is driven out of equilibrium in a
way given by the shape of the mode, it oscillates forever with the frequency given by the
excitation energy. Moreover, the evolution of any small initial perturbation may be obtained
by the decomposition in the basis of collective modes for which the time evolution is known
and given by the oscillatory motion with respective frequency. In order to find the collective
modes, we consider a standard ansatz for the time-dependent field φ(x, t), namely [15]

φ(x, t) =

(
φ0(x) + δφ(x, t)

)
e−iµLL[N/L]t/~, (2.16)

where
δφ(x, t) = u(x)e−iεt/~ + v∗(x)eiεt/~ (2.17)

is assumed to be a small deviation from the uniform state. We change the notation used
in the discussion of hydrodynamic equations and from now v(x) no longer denotes velocity
field of the gas. We see that the functions u(x) and v(x) determine the spatial dependence of
the density deviation, whereas ε sets its characteristic time scale. In order to determine the
allowed shapes of excitations (collective modes) u(x), v(x) and the corresponding excitation
energies ε we plug ansatz (2.16) into the equation of motion (2.12), keeping terms at most
linear at δφ. Using the fact, that φ0(x) is a stationary solution with corresponding chemical
potential µ = µLL[N/L], we get

i~∂tδφ =

[
− ~2

2m
∂2x +mv2LL[N/L]

]
δφ+mv2LL[N/L]δφ∗, (2.18)

where vLL[N/L] = ~N
mL

√
3eLL(γ)− 2γe′LL(γ) + 1

2γ
2e′′LL(γ) is an exact expression for the speed

of sound in LL model [12, 22]. Plugging our ansatz for δφ, see (2.17), we arrive at

εu(x) =
(
− ~2

2m
∂2x +mv2LL[N/L]

)
u(x) +mv2LL[N/L]v(x), (2.19a)

−εv(x) =
(
− ~2

2m
∂2x +mv2LL[N/L]

)
v(x) +mv2LL[N/L]u(x). (2.19b)

From the translational invariance of the system, it follows that we can consider u and v as
u(x) = ueipx/~ and v(x) = veipx/~ with p = 0,±2π~

L ,±4π~
L , . . ., which gives

εu =
p2

2m
u+ (u+ v)mv2LL[N/L], (2.20a)

−εv =
p2

2m
v + (u+ v)mv2LL[N/L]. (2.20b)

We solve these equations obtaining the excitation spectrum

ε(p) =

√
(vLL[N/L]p)2 +

( p2
2m

)2
. (2.21)

We omit the analysis of the density perturbation profiles u(x) and v(x). The purpose of this
section is to compare excitation energies. The analysis of the shapes of collective modes will
be performed in details in the case of quantum droplets. The result (2.21) may be directly
compared with the excitation spectrum found in the exact many-body treatment of LL model.
However, we must be careful at this point because LL model exhibits two different branches of
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Figure 2.1: Energies of elementary excitations ε as a function of momentum p for different
interaction strenghts γ. We compare energies found in effective approaches (GP and LLGP)
and exact results for the LL model. Results from the LLGP agree with the predictions of LL
model in the regimes of small and large momenta, contary to the GP equation that predicts
incorrect speed of sound governing low-momentum asymptotics of ε for sufficiently strong
interactions γ.

elementary excitations εI(p) and εII(p) [13], called phononic and solitonic branch, respectively.
Importantly, for the first branch, in the limit of small momenta p one recovers linear dispersion
relation

εI(p)
p→0
≈ vLL[N/L]|p|, (2.22)

at the same time, for large momenta we get quadratic dispersion of a free particle

εI(p)
p→∞
≈ p2

2m
. (2.23)

It turns out that the result (2.21) coincides with either (2.22) or (2.23) for very small or very
large p, correspondingly. Importantly, the agreement holds for any interaction strength.

This a promising result regarding the low-energy excitations of quantum droplets, because
by comparing our approach with the LL model we see, that hydrodynamic description may
correctly capture energies of excitations also in the strongly interacting regime, far beyond
the regime of weak interparticle correlations.

Lastly, let us note that a similar procedure may be carried out for the GP equation. In
this case, one recovers the same expression for the excitation energy as in (2.21) but with a
different speed of sound vGP[N/L] :=

√
gN/mL. Values of vGP and vLL coincide for small

interaction strength γ, but not surprisingly vGP[N/L] fails completely when γ is large as it
predicts a diverging speed of sound in contrast to vLL[N/L]

γ→∞→ π~N
mL . Once again, this
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observation supports the claim that the GP equation cannot be used to describe strongly
interacting bosons.

Summing up, we have presented a hydrodynamic approach that correctly describes low-
energy excitations of strongly repulsive gas. In the next chapter, we will extend it by including
attractive dipolar interactions.
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Chapter 3

Phases of strongly interacting dipolar
gas

In this chapter we describe atoms with magnetic moments µD polarized along X axis, trapped
in a tight harmonic trap in Y and Z directions, but free to move in the X direction.

Figure 3.1: Sketch of the system under study: polarized dipolar gas in one dimension.

In general, the total interaction potential between atoms in such setup reads

V (x− x′) = gδ(x− x′)− gddV
σ
dd(x− x′), (3.1)

with the long-range part of effective quasi-1D dipolar potential [23] given by

V σ
dd(x− x′) =

v(x−x
′

σ )

σ
, v(u) =

1

4

(
− 2|u|+

√
2π(1 + u2)eu

2/2Erfc(|u|/
√

2)

)
(3.2)

and

gdd = −
µ0µ

2
D

4π

1− 3 cos2 θ

σ2
. (3.3)

Here, σ =
√

~
mω⊥

denotes oscillator length of transversal harmonic confinement with frequency
ω⊥. The character of the interaction strongly depends on the angle θ defined in Fig. 3.2. We

Figure 3.2: Panel a): Character of the dipolar interaction strongly depends on the angle θ. In
b) we see configuration for which interactions are repulsive. We are interested in head-to-tail
configuration presented in c), for which interactions are attractive.
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focus on the attractive dipolar interactions, corresponding to configuration with angle θ = 0◦

and gdd > 0. As illustrated in Fig. 3.3 the length scale σ is directly related to the range of the
potential. When σ → 0, V σ

dd(x) acquires a form of a delta peak [23] V σ
dd(x)→ δ(x). For large

arguments, the potential is characterized by the standard dipolar decay V σ
dd(x) ∼ 1

x3
[23].

0.00 0.05 0.10 0.15 0.20

5

10

15

20

25

30

Figure 3.3: Dipolar interaction potential for different confinement length scales σ related to
the range of the potential.

Finally, let us note that the dipolar potential V σ
dd(x−x′) integrates to unity [23], therefore

the parameter gdd directly measures the strength of the dipolar attraction.

3.1. LLGP with dipolar interactions

In order to include dipolar forces in our model we work with the variational framework used
in the derivation of the LLGP equation. We need to generalize the energy functional (2.15)
by adding the energy related to dipolar interparticle interactions. Let us note that in the full
many-body picture, expectation value of the dipolar interaction energy calculated on a given
state may be written as

〈V̂dd〉 =

∫
dxdy G2(x, y)V σ

dd(x− y) (3.4)

where G2(x, y) = 〈Ψ̂†(x)Ψ̂†(y)Ψ̂(y)Ψ̂(x)〉 denotes the second order correlation function and
Ψ̂(x) is the bosonic field operator. Obviously, we do not know the explicit form of the
G2(x, y). However, one can anticipate some features of it having in mind the context of
quantum droplets with strong, contact interactions close to the fermionization regime. This
characteristic features discussed below will allow us to approximate (3.4) with a functional of
the field φ(x).

Firstly, we discuss the second order correlation function in the TG regime of infinitely
repulsive bosons, GTG

2 (x, y), where it may be explicitly calculated for the ground state. The
translational invariance implies that the function depends only on the distance between par-
ticles, therefore we define GTG

2 (x − y) := GTG
2 (x, y), shown in Fig. 3.4. Due to the inifitely
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strong repulsion GTG
2 vanishes at the diagonal x = y. For distances much longer than the

interparticle distance d := L/N , i.e. |x− y| � d, the correlation function tends to 1.
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Figure 3.4: Second order correlation function calculated for the ground state of TG gas. Due to
fermionization, GTG

2 (0) = 0 and the first maximum is reached around the point corresponding
to interparticle distance x = d. We see that d sets up the characteristic length scale for the
function i.e. for x� d, GTG

2 (x) = 1.

Let us now discuss the possible impact of attractive dipolar interactions on theG2 function.
In such cases one expects bound states, for which the translational symmetry is broken. The
function G2(x, y), known as the density-density correlation, is small at these positions x and
y where the density of the gas is very low. To account for this fact, one may approximate the
second order correlation function by G2(x, y) = ρ(x)ρ(y), where ρ(x) is the gas density. This
formula works excellently for the weak, purely attractive contact interaction, when atoms
form a bright solitons and the density is evaluated with the GP equation.

Combining these two observations, we propose the following form of the second order
correlation

G2(x, y) = GTG
2 (x− y)ρ(x)ρ(y). (3.5)

Such a form takes into account both, the fermionization (G2(x, y) = 0 for x = y) and the
impact of the gas inhomogenity. We assume the correlation function in the form (3.5) and
simplify the expression for the dipolar energy (3.4). Throughout this work, we will work in
the regime of long-range dipolar interactions with σ � d. Hence, under the integral (3.4) we
may treat the function GTG

2 (x− y) as constant as it differs from 1 only at the very small part
of the integration domain, i.e. in a narrow stripe of width d around the line x = y. After this
approximation, the functional for the total energy reads

E[φ] = N

∫
dx
[ ~2

2m

∣∣∣∣dφdx
∣∣∣∣2 +

N2~2

2m
|φ|6eLL

(
κ

N |φ|2

)
+

− 1

2
Ngdd

∫
dx′V σ

DD(x− x′)|φ(x)|2|φ(x′)|2
]
.

(3.6)
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Finally, applying the least action principle we obtain the extended LLGP equation

i
∂

∂t
φ = −1

2

∂2φ

∂x2
+ µLL

[
N |φ|2

]
φ− gddN

∫
dx′V σ

dd(x− x′)|φ(x′)|2φ(x), (3.7)

where we use ~ = m = 1 in consistency with [11]. An alternative justification of the LLGP
equation may be found in the Supplemental Materials of [11]. Additionally, a comparison
between effective equation (3.7) and results stemming from the full diagonalization of many-
body Hamiltonian for small systems can also be found in the same paper.

Note, that although we focused on the regime of strong contact repulsion γ � 1, and long-
range dipolar interactions σ � d, we are still left with an equation involving four parameters:
N , g, gdd and σ. In the next section, we study the solution to the equation (3.7) to characterize
different parameter regimes.

3.2. Stationary solutions in different regimes

Having the full equation (3.7) derived we may play with the parameters and observe, how
changes of respective parameters influence the resulting stationary solution. We divide the
stationary solutions into three classes: uniform solution, quantum droplet and bright soliton.
Description of these families of solutions is done in the remaining part of this section.

3.2.1. Uniform solution

In the previous chapter we focused on the case of purely repulsive gas. In such case, stationary
solution corresponds to the uniform gas density φGS(x) = 1/

√
L. Additional weak attractive

dipolar interaction does not change this phase and we may readily write down the expression
for the chemical potential

µ = µLL[N/L]− gdd
N

L
. (3.8)

However, for sufficiently large gdd the ground state becomes a bound state, i.e. a quantum
droplet or a soliton. This is a phase transition accompanied by the translational symmetry
breaking.

3.2.2. Quantum droplets

The first discussed phase with broken translational symmetry is the quantum droplet. Here,
we start by paying a special attention to the limit g →∞ that significantly simplifies analysis
of the LLGP equation.

Fermionized quantum droplets

In the regime g → ∞ the LL energy reads eLL(γ → ∞) = π2

3 and the stationary LLGP
equation takes the form

µφ = −1

2

∂2φ

∂x2
+
π2N2

2
|φ|4φ− gddN

∫
dx′V σ

dd(x− x′)|φ(x′)|2φ(x). (3.9)

As shown in Fig. 3.5, sufficiently strong attraction breaks the translational invariance and
the stationary solution takes the form of a quantum droplet. In the specific case of N = 500
considered here this happens between gdd = 100 and gdd = 140.
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Figure 3.5: Stationary solutions to the (3.9) for N = 500 and different interaction parameters.

One observes in Fig. 3.5, that the density profile of a droplet is characterized by a flat
top region with an approximately constant density and the edges, where the density rapidly
drops. Not surprisingly, the droplet becomes narrower as we increase dipolar attraction gdd.
Note that the range of dipolar interactions σ affects mainly the edges and does not influence
the bulk density of the droplet (compare dashed and solid lines).

Fermionized quantum droplets - analytical regime

We observe in the numerical simulations, that when the number of atoms increases, the droplet
becomes wider, whereas the width of the edge remains practically constant. Therefore one
may expect that the edge profile becomes irrelevant for some observables in the limit of
large particle number. In the previous section we have observed that the interaction range σ
influences mainly the edges. Thus, in the regime of wide droplets majority of the observables
should not be sensitive to the interaction range, as long as σ is much smaller than the width of
the dropletW . In particular, taking the limit σ → 0 should not change the profile significantly
in comparison to the profile obtained for some finite value σ �W . In such a limit, the dipolar
potential tends to delta function and the equation (3.9) acquires the following form

µφ = −1

2

∂2φ

∂x2
+
π2N2

2
|φ|4φ− gddN |φ|2φ. (3.10)

One can derive the analytical form of the ground state of the latter equation [24]

φ(x) =

√
3β

4α

tanh η√
1 + sechη cosh(x/a)

, (3.11)

where we introduced the following coefficients

α =
π2N2

2
β = gddN η =

√
2α

3
a =

1

β

η

tanh η
. (3.12)
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The chemical potential is calculated as follows

µ =

∫
dx
(1

2
|∂xφ|2 +

π2N2

2
|φ|6 − gddN |φ|4

)
. (3.13)

Exemplary solutions are presented in Fig. 3.6. As expected, droplets become wider with the
growing number of particles.
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Figure 3.6: Density profiles given in Eq. (3.10) for gdd = 50 and different particle numbers.

For large N , the density profile (3.11) tends to a rectangular shape with the height

ρ0 =
3β

4α
=

3gdd

2π2N
(3.14)

and with the width W = ρ−10 = 2π2N
3gdd

.

One may question the validity of the limit σ → 0 taken in (3.10), as our derivation of the
LLGP equation assumed that the range of interactions is much larger than the inter-particle
distance, i.e. d� σ. Although we explicitly considered the limit σ → 0, the large droplet limit
assumes only σ � W . Equation (3.10) should be valid in the regime, where both conditions
are fulfilled, i.e. when we have the following scale hierarchy d � σ � W . Such a regime is
investigated in Fig. 3.7. In this regime we observe that solutions of equations (3.10) and (3.9)
almost overlap. The widths and bulk densities agree, the only difference is visible in a small
region near the edges of the droplets. What is more, we see clearly that the exact solution
(3.11) approaches a rectangular profile. Later on, we will use such profile as an Ansatz to
derive analytically properties of the low-energy excitations in the considered regime.
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Figure 3.7: Stationary solutions to the Eq. (3.10) (solid lines) versus solutions to the non-local
Eq. (3.9) (dashed lines) for finite σ = 0.25. The dipolar attraction equals gdd = 140 and the
inter-particle distance d ≈ 0.047. The solutions to the Eq. (3.9) is indistinguishable from the
box ansatz prediction.

Quantum droplets for finite repulsion

Here, we present a short analysis of a generic stationary solutions for a finite repulsion g. We
will consider a specific case of g = 250, gdd = 180, N = 200, σ = 0.05 and observe, how te
change of parameters g, gdd, N, σ affects the stationary solution.
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Figure 3.8: Stationary solutions to the (2.12) for different parameters. We consider a reference
solution obtained for g = 250, gdd = 180, N = 200, σ = 0.05 and study how the change of the
parameters affects the stationary solution.
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From the Fig. 3.8 we may draw the following observations:

• Increasing the contact repulsion g results in a wider droplet.

• Increasing the dipolar attraction gdd results in a narrower droplet.

• Increasing the particle number N results in a wider droplet.

• Increasing the interaction range σ rounds the flat-top part (note that we previously
noted that for σ → 0 we get almost perfect flat top well approximated by rectangular
shape).

Rectangular ansatz for quantum droplets

To complete the discussion we propose some analytical understanding of quantum droplets in
our model. Given the above observations of the flat-top shape of a droplet, one can come up
with an approximate ansatz in a form of a rectangular solution

φ(x) =
1√
W

rect(x/W ), (3.15)

where the width W is the only parameter of the ansatz. In the following considerations we
also neglect the kinetic energy. In the range of checked parameters it is justified, as the kinetic
energy is dominated by the energy stemming from interactions.

We plug the rectangular ansatz into the energy functional [Eq.(3.6) with neglected kinetic
energy term] and calculate its derivative with respect to W looking for a minimum

dE

dW
=

1

2
N3

[
− 2

W 3
eLL

(gW
N

)
+

1

W 3

gW

N
e′LL

(gW
N

)]
+ gdd

N2

2W 2
= 0. (3.16)

The equation above may be cast in a compact equation

1

γW

(
2eLL(γW )− γW e′LL(γW )

)
= gdd/g, (3.17)

with W hidden in γW := gW/N . Additionally, one may calculate the corresponding chemical
potential in the rectangular approximation

µ = µLL[N/W ]− gdd
N

W
. (3.18)

In the next chapters we will extensively use the rectangular ansatz and formulae for W and
µ to derive analytically the energies and spatial dependence of elementary excitations in a
quantum droplet.

3.2.3. Bright solitons

Bright solitons are the last phase found in our model. They may appear when the finite
contact repulsion is less significant than the attractive dipolar forces.

On the level of the density profiles we see that for sufficiently large gdd, the flat-top profile
is replaced with a well-defined maximum of soliton-like shape.
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Figure 3.9: Droplet-soliton transition driven by changing gdd for g = 250, N = 200 and
σ = 0.05.

It is suggested in Ref. [11] that some form of a transition occurs around fdd = gdd/g = 1.
For fdd > 1 attraction dominates over the repulsion, the ground state gets narrower, peaked
and resemble bright soliton, as shown in Fig. 3.9. This rough criterion coincides with some
conclusions from the rectangular ansatz analysis. The equation (3.17) for droplets width may
be written as h(γW ) = fdd, with h(γ) = γ−1(2eLL(γ) − γe′LL(γ)). Importantly, the function
h(γ) fulfills h(γ) < 1 for all γ. It means that it is impossible to find a solution of (3.17) and
in consequence to minimize the energy functional with the rectangular ansatz when fdd > 1.
This fact suggests that the actual profile of the ground state is far from the rectangular
solution.

We have to admit here that the difference between quantum droplets and solitons found
in the LLGP equation is not well understood yet. Here, in fact we observe a crossover on the
level of the density profile. To resolve whether we really deal with two phases with distinctive
behavior one should rather inspect higher-order correlation functions. To address this problem
one should use more sophisticated methods than the hydrodynamic equation studied in this
thesis.

3.3. Phase transition

Finally, we give a criterion for parameters of our model, for which the stationary solution
becomes localized, i.e. becomes a bright soliton or a quantum droplet. Let us start on the
uniform side with stationary solution φ(x) = 1/

√
L. The total energy in the presence of

dipolar interactions

E[N,L] =
N3

2L2
eLL(γ)− N2gdd

2L
(3.19)
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does not depend on the range of the dipolar interaction σ. As in the previous chapter we
calculate pressure

P [N/L] = −∂E[N,L]

∂L
=
N3

2L3
(2eLL(γ)− γe′LL(γ))− gddN

2

2L2
. (3.20)

We see that the pressure consists of two competing terms. The first one is a positive con-
tribution from short-range repulsion, whereas the second one corresponds to negative pres-
sure introduced by dipolar attraction. The transition occurs when the pressure crosses zero,
P [N/L] = 0. Defining γdd = gddL/N we obtain an explicit formula for the critical line

γcrit
dd (γ) = 2eLL(γ)− γe′LL(γ). (3.21)

For γdd > γcrit
dd (γ) stationary solution takes the form of a quantum droplet or bright soliton

with broken translational symmetry.
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Figure 3.10: Phase diagram given by the critical line (3.21). For attraction γdd stronger
than γcrit

dd (∞) = 2π2

3 (marked here with dashed line) the translational symmetry is broken
regardless of the value of contact repulsion g.

Note that the condition (3.21) may be also interpreted in the picture of previously de-
scribed rectangular ansatz. The equation (3.21) is exactly the minimum condition (3.17) with
the droplet size equal to the ring length W = L. Starting from the localized phase, one may
say that the transition to the uniform phase occurs, when the droplet width approaches the
length of the confining ring.

The analysis presented above completes the characterization of the phases present in our
model. We have to be aware of the fact that it was done with a simple hydrodynamic theory
and we did not have access to higher-order correlation functions. This means that the full
many-body analysis may result in a richer phase diagram. In the next chapter, we study the
main subject of this thesis - elementary excitations of the dipolar gas.
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Chapter 4

Elementary excitations

In this chapter we study in detail elementary excitations in different regimes. In all cases,
collective modes as well as excitation energies are obtained as solutions of BdG equations.
The whole procedure is similar to the one presented in Chapter 2, with a modification in the
case of quantum droplets that break the translational symmetry making the analysis more
complex.

4.1. Uniform phase

Let us start with the excitations of a gas with parameters from the the blue part of the
phase diagram presented in Fig.3.10. We want to find the collective modes and excitation
energies related to the perturbation of the uniform solution φ0(x) = 1/

√
L. We remind that

the dynamics is given by the equation

i
∂

∂t
φ = −1

2

∂2φ

∂x2
+ µLL

[
N |φ|2

]
φ− gddN

∫
dx′V σ

dd(x− x′)|φ(x′)|2φ(x), (4.1)

Here we will repeat the analysis presented in the subsection 2.2.1, but including the dipolar
potential. In this case the chemical potential of the solution φ0(x) reads

µ = µLL[N/L]− gddN

L
. (4.2)

We consider the same ansatz for time-dependent field as in the subsection 2.2.1, namely

φ(x, t) =

(
φ0(x) + δφ(x, t)

)
e−iµt, (4.3)

where the small correction to the stationary solution is assumed in the form

δφ(x, t) = u(x)e−iεt + v∗(x)eiεt. (4.4)

By applying the general form of the ansatz (4.3) into the dynamical equation (4.1) and
keeping terms at most linear in δφ we get

i∂tδφ =

[
− 1

2
∂2x + v2LL[N/L] + J

]
δφ+

[
v2LL[N/L] + J

]
δφ∗, (4.5)

where we defined the following operator

J [δφ(x)] = −gddN

L

∫
dx′V σ

dd(x− x′)δφ(x′). (4.6)
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Using the ansatz (4.4) for a small perturbation we obtain a pair of equations

εu(x) =
(
− 1

2
∂2x + v2LL[N/L] + J

)
u(x) +

(
v2LL[N/L] + J

)
v(x), (4.7a)

−εv(x) =
(
− 1

2
∂2x + v2LL[N/L] + J

)
v(x) +

(
v2LL[N/L] + J

)
u(x). (4.7b)

We are looking for solutions in the form of plane waves u(x) = ueipx and v(x) = veipx with
p = 0,±2π

L ,±
4π
L , . . . We rewrite equations (4.7a) and (4.7b)

εu =
(p2

2
+ v2LL[N/L]− gddN

L
V̂ σ

dd(p)
)
u+

(
v2LL[N/L]− gddN

L
V̂ σ

dd(p)
)
v, (4.8a)

−εv =
(p2

2
+ v2LL[N/L]− gddN

L
V̂ σ

dd(p)
)
v +

(
v2LL[N/L]− gddN

L
V̂ σ

dd(p)
)
u, (4.8b)

where the Fourier transform of the interaction potential V̂ σ
dd(p) :=

∫
dxeipxV σ

dd(x) can be
calculated analytically giving

V̂ σ
dd(p) = 1− F

((σp)2

2

)
F (x) = xexE1(x), (4.9)

where E1(x) is the exponential integral function. For small momenta p → 0 the dipolar
potential converges to a constant V̂ σ

dd(p) → 1 and for large arguments V̂ σ
dd(p) ∼ p−3. The

equations (4.8a)-(4.8b) can be easily diagonalized yielding the excitations energies

ε(p) =

√(
v2LL[N/L]− gddN

L
V̂ σ

dd(p)
)
p2 +

(p2
2

)2
. (4.10)

Note that for large momenta p→∞ we get the dispersion relation of a free particle

ε(p) ∼ p2/2. (4.11)

For small momenta p→ 0 we recover linear phononic spectrum

ε(p) ∼ vdd[N/L]|p|. (4.12)

with the speed of sound equal to vdd[N/L] =
√
v2LL[N/L]− gddN

L . Interestingly, the speed
of sound may become imaginary when the dipolar attraction is sufficiently strong, and the
following relation holds:

gddN

L
> v2LL[N/L]. (4.13)

In this case the excitation energy becomes imaginary indicating instability of the uniform
solution. In order to see that imaginary excitation energy indeed implies instability we have
to keep in mind the the evolution of the initial perturbation is given by factors e±iεt. After
sufficiently long time, the initially small perturbation will exponentially grow in time, even-
tually leading to a highly non-equilibrium state. The equation (4.13) may be used to find the
expression for the critical value of the dipolar attraction γcr,spec

dd (γ), above which the uniform
solution is unstable

γcr,spec
dd (γ) = 3eLL(γ)− 2γe′LL(γ) +

1

2
γ2e′′LL(γ). (4.14)

On the other hand, from the previous chapter we know that there is an another critical value
of the dipolar attraction, given by (3.21), at which gas pressure calculated for the uniform
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solution becomes negative. It is therefore crucial to compare the two expressions (3.21) and
(4.14).
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Figure 4.1: Comparison of two critical lines (3.21) and (4.14).

In Fig.4.1 we notice that for all values of contact repulsion γ it holds γcr
dd(γ) < γcr,spec

dd (γ).
It means that the uniform solution may be unstable, but only when it corresponds to negative
pressure. On the other hand in such case we know, the the ground state solution is either
a bright soliton or a quantum droplet with broken translational symmetry. Therefore, the
phononic instability found here does not have any physical meaning. Before we reach the
threshold (4.14) the uniform ground state solution becomes localized and we have to analyze
excitations in a different way, taking modified density profile into account.

4.2. BdG equations in the non-uniform case

Here we set up the stage to analyze excitations of quantum droplets. We have to abandon the
assumption that our stationary solution is uniform and this makes the analysis much more
complicated. We will assume that the stationary profile φ0(x) is real, which is the case for
all stationary solutions presented before. As our profile is no longer uniform, the parameter
γ = gL/N has to be replaced with a function of position γ(x) = g/Nφ0(x)2. We define two
auxiliary functions

f1(x) =
1

2
N2φ40(x)

(
9eLL

(
γ(x)

)
− 5γ(x)e′LL

(
γ(x)

)
+ γ2(x)e′′LL

(
γ(x)

))
, (4.15a)

f2(x) =
1

2
N2φ40(x)

(
6eLL

(
γ(x)

)
− 4γ(x)e′LL

(
γ(x)

)
+ γ2(x)e′′LL

(
γ(x)

))
, (4.15b)

and the two integral operators are defined as follows

J1δ(x) = −gddN

∫
dx′V σ

dd(x− x′)φ20(x′)δ(x), (4.16a)

J2δ(x) = −gddN

∫
dx′V σ

dd(x− x′)φ0(x′)φ0(x)δ(x′). (4.16b)
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With these definitions at hand, the BdG equations in the non-uniform case may be written
in a compact way

εu(x) =
(
− 1

2
∂2x − µ+ f1(x) + J1 + J2

)
u(x) +

(
f2(x) + J2

)
v(x), (4.17a)

−εv(x) =
(
− 1

2
∂2x − µ+ f1(x) + J1 + J2

)
v(x) +

(
f2(x) + J2

)
u(x), (4.17b)

where µ is the chemical potential of the stationary non-uniform solution φ0(x). It is convinient
to write these two equations in a matrix form(

−1
2∂

2
x − µ+ f1(x) + J1 + J2 f2(x) + J2
−f2(x)− J2 1

2∂
2
x + µ− f1(x)− J1 − J2

)(
u
v

)
= ε

(
u
v

)
. (4.18)

Following [25] we introduce a pair of new variables r(x) := 1
2(u(x) + v(x)) and s(x) :=

1
2(v(x)− u(x)) that obey(

0 −1
2∂

2
x − µ+ f1(x)− f2(x) + J1

−1
2∂

2
x − µ+ f1(x) + f2(x) + J1 + 2J2 0

)(
r
s

)
= ε

(
r
s

)
.

(4.19)
The problem may be further simplified by acting twice with the matrix from Eq. (4.19) on
the vector [r(x), s(x)]T . This step gives two separate, seemingly independent, equations for
functions r(x) and s(x)(
− 1

2
∂2x − µ+ f1(x)− f2(x) + J1

)(
− 1

2
∂2x − µ+ f1(x) + f2(x) + J1 + 2J2

)
r(x) = ε2r(x),

(4.20a)(
− 1

2
∂2x − µ+ f1(x) + f2(x) + J1 + 2J2

)(
− 1

2
∂2x − µ+ f1(x)− f2(x) + J1

)
s(x) = ε2s(x).

(4.20b)

For the sake of brevity we introduce two operators

Â := −1

2
∂2x − µ+ f1(x)− f2(x) + J1, (4.21a)

B̂ := −1

2
∂2x − µ+ f1(x) + f2(x) + J1 + 2J2, (4.21b)

to cast the BdG equations in the final form

ÂB̂r(x) = ε2r(x), (4.22a)

B̂Âs(x) = ε2s(x). (4.22b)

It is sufficient to find eigenvalues for just one equation (4.22a) or (4.22b). For instance, if
r(x) is an eigenvector, the corresponding eigenvector s(x) of equation (4.22b) (with the same
eigenvalue ε) may be found from (4.19). Explicitly, s(x) = ε−1B̂r(x).

Eigenproblems (4.22a) and (4.22b) can be solved in the momentum space. We have to
introduce momentum representation of the functions involved

φ0(x) =
1√
L

∑
p

φp e
ipx, (4.23a)

ρ(x) = φ20(x) =
1√
L

∑
p

ρp e
ipx, (4.23b)

f1,2(x) =
1√
L

∑
p

f1,2p eipx, (4.23c)
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as well as the matrix elements of the operators in the momentum space(
− 1

2
∂2x

)
p1,p2

=
p21
2
δp1,p2 , (4.24a)(

µ
)
p1,p2

= µδp1,p2 , (4.24b)(
f1,2(x)

)
p1,p2

= f1,2p1−p2 , (4.24c)(
J1
)
p1,p2

= −gddNρp2−p1 V̂
σ
dd(p2 − p1), (4.24d)(

J2
)
p1,p2

= −gddN
∑
q

φqφp2−p1−qV̂
σ
dd(q), (4.24e)

where δp1,p2 denotes the Kronecker delta. We use the above listed matrix elements to construct
matrices Â and B̂ in the momentum space. Products ÂB̂ and B̂Â are obtained via simple
matrix multiplication.

Let us note that among the solutions to the equations (4.22a) and (4.22b) there are always
two zero-energy modes, similarly as in the Ref. [26] discussing excitations of two-component
one-dimensional droplets. The shape of the first zero-energy solution can be easily identified
and is given by the stationary solution s(x) = φ0(x). Indeed, φ0(x) satisfies the equation
Âφ0(x) = 0, hence it is an eigenvector of (4.22b) with ε = 0.

Finally, let us touch upon the shapes of the collective modes u(x) and v(x). In the
physical situations considered here, these functions are purely real allowing us to write down
the time-dependent density profile as

ρ(x, t) = |φ(x, t)|2 ≈ |φ0(x)|2 + 2φ0(x)
(
u(x) + v(x)

)
cos(εt/~). (4.25)

We see that the function 2r(x) = u(x)+v(x) gives the shape of the density perturbation. Note
also that there is some freedom in the normalization of functions u(x) and v(x). This may be
seen on the level of equations (4.22a) and (4.22b). These equations are clearly homogenous
with respect to the functions r(x) and s(x). Therefore, the normalization of these functions
has to be chosen and our convention for the normalization corresponds to the condition∫

dx
(
|u(x)|2 − |v(x)|2

)
=

1

N
. (4.26)

Origins of a such condition may be tracked down the suggestive form of correction to the
energy induced by the perturbation [15]. When the perturbation consists of different collective
modes, i.e.

δφ(x, t) =
∑
i

[
ui(x)eiεit + v∗i (x)e−iεit

]
(4.27)

the energy of the perturbed state may be cast in the form E = E0+δE, where E0 is the energy
of stationary profile φ0(x) and δE is the energy related to the perturbation. The energy of
the excited modes reads

δE = N
∑
i

∫
dx
(
|ui(x)|2 − |vi(x)|2

)
εi. (4.28)

Because of that form, the integral above multiplied by the particle number N is interpreted as
occupation ni of i-th excitation mode with energy εi. Our aim is to study the case of a single
excited quasiparticle ni = 1, hence the condition (4.29). For convenience, we may formulate
the normalization condition (4.29) in terms of the function r(x)∫

dx
(
|u(x)|2 − |v(x)|2

)
=

∫
dx r(x)s(x) = ε−1

∫
dx r(x)B̂r(x) =

1

N
. (4.29)
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Technical details

The BdG equations (4.22a) and (4.22b) turned out to be challenging to solve. Solving them
requires a very accurate density profile φ0(x), which is also obtained only numerically. Since
the whole method considers very small perturbation around φ0(x), the stationary profile has
to fulfill Âφ0(x) = 0 to a very high accuracy. Therefore, excitations were found only in the
analytical regime corresponding to fermionization limit γ →∞ and σ → 0 where the energy
functional simplifies to the form eLL(γ → ∞) = π2

3 and the dipolar interction potential
is replaced with a delta function. The generic situation requires a more accurate method
of determining the stationary solution and is left for future work, although we give some
analytical approximation for excitations based on a rectangular ansatz. The initial work is
done here, as we derived BdG equations for the most general case of finite γ and σ.

The stationary solution φ0 is evaluated on a grid consisting of Ngrid points. Fourier
representation is found via discrete Fourier transform. Solution of the BdG equations (4.22a)
and (4.22b) boils down to a diagonalization of Ngrid × Ngrid matrix. For large enough Ngrid
we observe convergence of the lowest eigenvalues and eigenvectors and occurence of two zero-
energy modes.

4.3. Analysis of excitations

We consider the simplest regime of γ → ∞ and σ → 0, where the exact solution (3.11) is
known. In this way we avoid problems related to finding numerically accurate stationary
solution φ0(x). We focus on the exemplary quantum droplet with N = 30 and gdd = 100.
The corresponding density profile is depicted in the inset of Fig. 4.2.
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Figure 4.2: Lowest-lying excitation energies of the quantum droplet presented in the inset.
The index i has no physical meaning – it enumerates the consecutive excitations.

The energies ε of the lowest energy excitations and shapes of the modes r(x) obtained
from the BdG equations are presented in Figures 4.2 and 4.3, respectively.
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Figure 4.3: Shapes of the collective modes given by the function r(x) for the droplet presented
in Fig.4.2.

Firstly, let us analyze the excitation spectrum. We observe two zero-energy modes. Then,
we see eight modes with energies that are linear in the mode number i. When the excitation
energy reaches the absolute value of chemical potential −µ, the dependence of the energy on
the mode number changes drastically. These observations may be understood when looking
at the shapes of excitations, presented in Fig. 4.3. In the case of the first ten modes we see
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large values of function r(x) for the positions corresponding to the edges of the droplet. Let us
analyze further this peculiar feature. We have to keep in mind that the density perturbation
is given by the formula (4.25), so the function r(x) is multiplied by the density profile φ0(x).
Thus, large values of r(x) are accompanied with small values of φ0(x). Therefore, the most
interesting region of function r(x) is the one, where also φ0(x) is large i.e. in the flat-top part.
Here, we see that the zero-energy modes i = 1, 2 do not induce any non-trivial perturbation.
Starting from i = 3 we observe cosine-like modes similar to the wavefunctions of particle in
a box with a width given by the width of the droplet W . These shapes describe phononic
excitations with linear dispersion visible in Fig. 4.2 (we will show later, that the linear
dependence on i indeed corresponds to the linear behavior in momenta). When the energy
of the phononic excitations surpasses chemical potential, the shape of exciations changes its
character. We see that starting from i = 11 functions r(x) are non-zero also outside the
droplet. This implies that such excitation induces emission of the particles from the bound
droplet.

Summing up, the excitations may be divided into three groups. There is a pair of zero-
energy modes, that oscillate for an infinitely long time. Then there is a finite number of
phononic bound modes (in this specific case we have eight such modes). Once the excita-
tion energy goes beyond the chemical potential, the scattering modes appear, with non-zero
probability density of finding a particle outside the droplet.

The results presented above were obtained from the exact numerical solution of BdG equa-
tions (4.22a) and (4.22a), written for the exact solution (3.11). However, as we see from the
inset of Fig. 4.2, the density profile is not far from the rectangular solution introduced in the
previous chapter. When the density profile φ0(x) is replaced with the rectangular approxi-
mation, BdG equations can be greatly simplified. Then, the analysis strongly resembles the
uniform case and the excitation spectrum is given by the formula

ε(p) =

√(
(πN/W )2 − gddN/W

)
p2 +

(p2
2

)2
. (4.30)

with the allowed momenta given by the boundary conditions set by the box of width W ,
p = π

W , 2πW , . . .. The width W may be calculated from the equation (3.17).
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Figure 4.4: Comparison of excitation energies obtained from the full BdG equations (4.22a)
and (4.22a) and the approximated results (4.30) based on the rectangular ansatz.
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In Fig. 4.4 we see that the dispersion relation (4.30), based on the rectangular approx-
imation, correctly describes energies of the bound modes, with some discrepancies near the
threshold value of the excitation energy given by the absolute value of chemical potential.
However, there is an infinite number of bound modes in such an approach.

We have analyzed in detail the excitations exhibited by a quantum droplet for a given
value of the parameters, N = 30 and gdd = 100. In the remaining part of this section, we
study the excitation spectrum when this two parameters of our model, N and gdd are varying.
Firstly, we fix N = 30 and study excitations of droplets between gdd = 5 and gdd = 100.
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Figure 4.5: Excitation spectrum of bound modes for N = 30 as a function of gdd. Regardless
of the value of gdd, the spectrum consists of eight modes with energies growing with gdd.
Dashed lines denote the predicitions of rectangular ansatz. Inset: density profiles for the
boundary values of the considered dipolar attraction.

The results are presented in Fig. 4.5, restricted to the bound modes only. It turns out that
the number of modes is independent of the parameter gdd, and energies of all modes grow
with the gdd. Additionally, we see that rectangular ansatz works well for all considered values
of the parameter gdd. The differences between spectrum (4.30) marked with dashed lines and
results from the exact numerical solution of BdG equations plotted with solid lines are small.

In the second scenario, we fix gdd = 5 and change the particle number from N = 5
to N = 40. The density profiles corresponding to such particle numbers are presented in
Fig. 4.6. The droplet becomes wider with the growing N , consistently with the conclusions
from the previous chapter. In Fig. 4.7 we show the excitation spectrum as a function of
particle number N . Contrary to the previous case, the number of bound modes changes with
the control parameter. As we increase N , more and more modes go below the threshold value
of the excitation energy. Additionally, the energy of the modes itself is a decreasing function
of N . Once again, rectangular ansatz predicitions agree well with the full solution of BdG

31



equations.
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Figure 4.6: Density profiles for boundary values of considered particle numbers. The dipolar
attraction is fixed at gdd = 5.
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Figure 4.7: Excitation spectrum of bound modes as a function of particle number N . The
dipolar attraction is fixed at gdd = 5. Dashed lines mark predicitons of rectangular ansatz.

Results presented in figures 4.4 and 4.7 raise several questions. Does the number of modes
depend only on the particle number? What are the threshold values of N (for fixed gdd)
for which a new bound mode enters the excitation spectrum? In what manner excitation
energies grow with gdd and decay with N? Remarkably, all these questions may be answered
analytically in the framework set by the rectangular ansatz. In the limit of fermionization,
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the equation (3.17) simplifies giving width of the droplet explicitly

W =
2π2N

3gdd
. (4.31)

Similarly, chemical potential given by (3.18) reduces to

µ = − 3

8π2
g2dd. (4.32)

Excitation energy of the m-th box mode with momentum p = mπ
W reads

εm =
m

N

( 3

2π

)2√1

3
+

m2

4N2
g2dd. (4.33)

Hence, excitation energies grow with gdd quadratically. For large N , energies decay with N
as ∼ N−1. The number of bound modes is given by the condition εmmax = −µ.

mmax

N

( 3

2π

)2√1

3
+
m2

max
4N2

=
3

8π2
. (4.34)

Note that this condition is independent of gdd, in accordance with the results presented in Fig.
4.5. Moreover, the condition above gives the values of N for which a new bound mode with a
number mmax enters the excitation spectrum. The equation above may be solved analytically
leading to

mmax =

√
1

3
(
√

5− 2)N ≈ 0.28N. (4.35)

Hence the number of bound modes grows linearly with the particle numberN . The rectangular
ansatz analysis completes the characterization of excitations in the analytical regime. One may
expect that such approach may also be valid for finite repulsion or non-zero σ as long as the
shape of the stationary solution resembles rectangle. Below, we present excitation energies and
condition for number of modes derived in such approximation. Due to previously mentioned
complexity of BdG equations in these regimes, we cannot compare with full solutions and
leave these results as uncertain preliminary attempts.

Excitation energies with rectangular ansatz - general case

The width W of the droplet is determined from (3.17) and the chemical potential µ is given
by (3.18). The excitation energies are given by the formula

εm =

√(
v2LL[N/W ]− gddN

W
V̂ σ

dd
(mπ
W

))(mπ
W

)2
+
((mπ

W

)2
2

)2
. (4.36)

The number of bound modes is determined from the transcendental equation εmmax = −µ. It
should be roughly correct as long as the stationary profile is close to a rectangular solution.
We assumed here that scattering and bound modes occur not only in the analytical regime
but also in generic quantum droplet solution. Although we do not have a solid argument, let
us note that such structure was visible in our attempts to solve BdG equations also in different
regimes. We did not manage to find satisfactory convergence of the excitation energies, but
the energy of the chemical potential was clearly distinguished, dividing the modes into bound
and scattering families.
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Chapter 5

Summary

We demonstrated that a one-dimensional dipolar Bose gas may unravel quantum droplets
and we studied their elementary excitations. A hydrodynamic theory of strongly interacting
gas was constructed basing on the results from the Lieb-Liniger model. The underlying
LLGP equation works for an arbitrarily strong interactions and correctly describes low-energy
elementary excitations. We confirmed that observation in Chapter 2 by a direct comparison
of results from linearization of LLGP equation with the exact results from the LL model.

Subsequently in the Chapter 3, we added the dipolar attraction into our model. We
classified phases of the gas by dividing stationary solutions to the LLGP equation into three
groups: uniform solutions, bright solitons and quantum droplets. Additionally, we found
a regime where the LLGP equation is exactly solvable [24]. This is the case for infinitely
strong contact repulsion and in the limit of zero range of the dipolar interactions. We have
introduced an approximate rectangular ansatz that may be used to analytically predict the
width of the droplet as well as its chemical potential. Lastly, we performed an analysis of
phase transitions in our model. We started with a short description of bright soliton-droplet
transition. In addition to that, we took a closer look at the transtion between uniform and
localized stationary solutions and derived an expression for the critical line.

After that initial analysis we proceeded to study elementary excitations. This was done
by the means of solving the BdG equations. For the uniform solution, we were able to
derive exact expressions for excitation energies. Next, we extended our formalism to non-
uniform stationary solutions and described the numerical methods. Due to the numerical
complexity, we had to restrict ourselves only to the analytical regime. Here, we observed
that the physically relevant modes may be divided into two groups. The first one consists
of bound modes characterized by excitation energies smaller than the absolute value of the
chemical potential. Such modes correspond to a small oscillations of a quantum droplet.
The scattering modes, on the other hand, have excitation energies larger than the absolute
value of chemical potential and display non-zero probability of finding a particle outside the
droplet. Initial numerical studies suggest that such structure may be an universal feature of
generic flat-top quantum droplets that are found in our model. The numerical findings were
supplemented by the analytical results obtained in the rectangular ansatz approximation. A
very good agreement between these two methods was observed. Additionally, we presented
results for excitations based on the rectangular ansatz also outside the analytically solvable
regime. However, the full solution of BdG equations in a generic regime still awaits more
accurate method of finding the stationary solution. This is left for future work.
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Appendix A

Imaginary time evolution method

The stationary solutions presented in this thesis are solutions of complex, nonlinear equation
(3.7). Given the complicted form of eLL(γ) and the non-local character of dipolar interactions,
the equation cannot be solved analytically in the general case. One has to look for approxi-
mate, numerical method. Throughout this work, we will always use the so-called imaginary
time evolution (ITE) method, working as follows.

We discretize the space into Ngrid points with grid spacing ∆x. The starting point of the
algorithm corresponds to proposition of a initial, trial function φ(x). Then, we "evolve" this
initial function in the imaginary time t → −iτ applying the "evolution" operator e−Hτ in a
consecutive, small steps. Here, H denotes the energy functional (3.6). After the each step,
the resulting, new density profile is normalized. Algorithm ends when the relative differences
between energies of the profiles obtained in consecutive steps are smaller than some very
small, fixed number.

In this thesis I was using the implementation of the algorithm availible here https://
gitlab.com/jakkop/mudge/-/tags/v01Jun2021. I did not contribute to the code in any
form.
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Appendix B

Accurate representation of the
function eLL(γ)

The LLGP equation assumes explicit knowledge of the function eLL(γ) introduced in [12].
Fortunately, there are an extremely accurate approximations for that function in the whole
region of the interaction strength γ. Here, we write down the results of [27]. For the weakly
interacting gas γ < 1 we have

eLL(γ) = γ − 4

3π
γ3/2 +

[
1

6
− 1

π2

]
γ2 − 0.0016γ5/2 +O(γ3). (B.1)

In the regime of intermediate interactions 1 ≤ γ < 15 the approximation reads

eLL(γ) ≈ γ− 4

3π
γ3/2 +

[
1

6
− 1

π2

]
γ2−0.002005γ5/2 + 0.000419γ3−0.000284γ7/2 + 0.000031γ4.

(B.2)
Finally, nearly TG regime γ ≥ 15 we have the following

eLL(γ) ≈ π2

3

(
1− 4

γ
+

12

γ2
− 10.9448

γ3
− 130.552

γ4
+

804.13

γ5
− 910.345

γ6
− 15423.8

γ7
+

100559.

γ8
− 67110.5

γ9
− 2.64681× 106

γ10
+

1.55627× 107

γ11
+

4.69185× 106

γ12
−

5.35057× 108

γ13
+

2.6096× 109

γ14
+

4.84076× 109

γ15
− 1.16548× 1011

γ16
+

4.35667× 1011

γ17
+

1.93421× 1012

γ18
− 2.60894× 1013

γ19
+

6.51416× 1013

γ20
+O

(
1

γ21

))
.

(B.3)
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The results presented in Chapter 2 are published in a preprint:

1. J. Kopyciński, M. Łebek, M. Marciniak, R. Ołdziejewski, W. Górecki, K. Pawłowski, Be-
yond Gross-Pitaevskii equation for 1D gas: quasiparticles and solitons, arXiv:2106.15289
(2021)

The results of Chapters 3 and 4 are planned to be published in the near future.

List of publications and preprints beyond the scope of this thesis:

2. M. Łebek, A. Syrwid, P. T. Grochowski, K. Rzążewski, Repulsive dynamics of strongly
attractive one-dimensional quantum gases, arXiv:2107.05594 (2021)

3. A. Syrwid, M. Łebek, P. T. Grochowski, K. Rzążewski, Many-body molecule forma-
tion at a domain wall in a one-dimensional strongly interacting ultracold Fermi gas,
arXiv:2105.00439 (2021)

4. M. Łebek, P. Jakubczyk, Thermodynamic Casimir forces in strongly anisotropic systems
within the N →∞ class, SciPost Phys. Core 4, 016 (2021)

5. M. Łebek, P. T. Grochowski, K. Rzążewski, Single- to many-body crossover of a quantum
carpet , Phys. Rev. Research 3, 023009 (2021)

6. M. Łebek, P. Jakubczyk, Dimensional crossovers and Casimir forces for the Bose gas
in anisotropic optical lattices , Phys. Rev. A 102, 013324 (2020)

7. M. Kruk, M.Łebek, K. Rzążewski, Statistical properties of cold bosons in a ring trap ,
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